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Figure 1. Top: an example taxonomy learned without supetvifom 300 pictures (collections 14000, 144000, and 18)Gtbm the
Corel dataset. Images are represented using ‘space-dstograms’ (sectiod.1). Each node shows a synthetically generated ‘quilt’ — an
icon that represents that node’s model of images. As candse semmon colors (such as black) are represented at tos aodetherefore
are shared among multiple images. Bottom: an example intagedach leaf node is shown below each leaf.

Abstract 1. Introduction

As more images and categories become available, orga-  Recent progress in visual recognition has been breath-
nizing them becomes crucial. We present a novel statisticaltaking, with recent experiments dealing with up to 256 cat-
method for organizing a collection of images into a tree- egories B]. One challenge that has been, so far, overlooked,
shaped hierarchy. The method employs a non-parametricis how to organize the space of categories. Our current or-
Bayesian model and is completely unsupervised. Each imganization is an unordered ‘laundry list' of names and as-
age is associated with a path through a tree. Similarimages sociated category models. However, as everyone knows,
share initial segments of their paths and therefore have asome Categories are similar and other categories are dif-
smaller distance from each other. Each internal node in ferent. For examp|e' we find many similarities between
the hierarchy represents information that is common to im- cats and dogs, and none between cell-phones and dogs,
ages whose paths pass through that node, thus providing ayhile cell-phones and personal organizers look quite sim-
compact image representation. Our experiments show thatjjar. This suggests that we should, at least, attempt to or-
a disorganized collection of images will be organized into ganize Categories by some Sim"arity metric in an appropri-
an intuitive taxonomy. Furthermore, we find that the taxon- ate Spacem ]_1] However, there may be Stronger orga-
omy allows good image categorization and, in this respect, nizing principles. In botany and zoology, species of living
is superior to the popular LDA model. creatures are organized according to a much more stringent

structure: a tree. This tree describes not only the ‘atomic’



categories (the species), but also higher-level and broade The model (called TAX) is summarized in Figuzelm-
categories: genera, classes, orders, families, philaieta. ages are represented as bags of visual words. Visual words
hierarchical fashion. This organization is justified bylphi are the basic units in this representation. Each visual word
genesis: the hierarchy is a family tree. However, earlier at is a cluster of visually similar image patches. The visual
tempts at biological taxonomies (e. g. the work of Linnaeus) dictionary is the set of all visual words used by the model.
were not based on this principle and rather relied on inspec-Typically, this dictionary is learned from training data¢s

tion of visual properties. Similarly, man-made objects may tion 4).

often also be grouped into hierarchies (e.g. vehiclesyihcl Similarly to LDA [2, 15, 5], distinctive patterns of co-

ing wheeled vehicles, aircraft and boats, each one of whichgccyrence of visual words are represented by ‘topics’. A
is further subdivided into finer categories). Thereforesiti  topic is a multinomial distribution over the visual dictiany.
reasonable to wonder whether visual properties alone wouldtypically, this distribution is sparse, so that only a sulse
allow us to organize the categories of our visual world into yisyal words have substantial probability in a given topic.
hierarchical structures. The purpose of the present studyThys, a topic represents a set of words that tend to co-occur
is to explore mechanisms by which visual taxonomies, i. in images. Typically, this corresponds to a coherent visual
e. tree-like hierarchical organizations of visual catég®r  structure, such as skies or sarig. [ We denote the total

may be discovered from unorganized collections of images. number of topics in the model bf. Each topice; has a
We do not know whether a tree is the correct structure, but yniform Dirichlet prior with parameter (Figure2).

it is of interest to experiment with a number of datasets in
order to gain insight into the problem.

Why worry about taxonomies? There are many reasons
for this. First, depending on our task, we may need to de-
tect/recognize visual categories at different levels sbre
lution: if I am about to go for a walk | will be looking for ] ) ] } S
my dog Fido, a very specific search task, while if | am look- _ Categories are organized hierarchically, as in Figlire
ing for dinner, any mammal will do; this is a much more For simplicity, we assume that the hierarchy has a fixed

general detection task. Second, depending on our exposurd€PthL (this assumption can be easily relaxed). Each node
to a certain class of images, we may be able to make more® in the hierarchy represents a category, and is therefore as-
or less subtle distinctions: a ‘bird’ seen by a casual stroll  SOciated with a distribution over topies.

may be a snipe to a trained bird-watcher. Third, given the  Figure2 describes the complete generative process.

image of an object, a tree structure may lead to quickeriden-  Recall that our criterion for a useful taxonomy is that
tification than simply going down a list, as currently done. shared information is represented at nodes which are higher
There are other reasons as well, including sharing visual de up in the tree and are shared among many images. The gen-
scriptors between similar categorieis’, and forming ap-  erative process described in Figutés naturally suited to
propriate priors for learning new categories. This dis@ss  this criterion. The nodes higher up in the taxonomy are used
highlights properties we may want our taxonomy to have: by many paths; the information they represent is therefore
(a) allow categorization both of coarse-categories and fine shared by many images. For instance, the root node is nec-
categories, (b) grow incrementally without supervisiamda  essarily used by all paths and therefore will model very gen-
form new categories as new evidence becomes availableeral topics that exist in all images. Conversely, the lower a
(c) support efficient categorization, (d) similar categsri  node is in the taxonomy, the fewer images traverse it, and
should share features, thus further decreasing the computhe more image-specific the information at that node is.

tation_al load, (e) allow to form priors for efficient one-sho Next, we describe how the tree that represents the tax-
learning. onomy is generated. A nonparametric prior over tree struc-
tures of depthl,, known as the ‘nested Chinese restaurant
process’ (NCRP) is used]. This prior is flexible enough

We approach the problem of taxonomy learning as one of 10 allow learning an arbitrary taxonomy, but also allows for
generative modeling. In our model, images are generated byefficient inference. Seel for details.
descending down the branches of a tree. The shape of the Compared to the original NCRP modé][the proposed
tree is estimated directly from a collection of training im- TAX model allows to represent several topics at each node
ages. Thus, model fitting produces a taxonomy for a givenin the taxonomy. In addition, it makes all topics availalile a
collection of images. The main contribution is that thispro every node. Although NCRP has been used successfully in
cess can be performed completely without supervision, buttext modeling f], we found that these changes were neces-
a simple extension (sectigh?) also allows supervised in-  sary to infer visual taxonomies (experiments not shown due
ference. to lack of space).

A category is represented as a multinomial distribution
over theT topics. The distribution for category is de-
noted byr. and has a uniform Dirichlet prior with param-
etera. For example, a ‘beach scenes’ category might have
high probability for the ‘sea’, ‘sand’, and ‘skies’ topics.

2. The generative model for visual taxonomies
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Figure 2. Left: the generative model. Right: an illustrataf the generative process. An imagis generated as follows. First, a complete
path from the root to a leaf through the hierarchy is samp&dce the hierarchy depth is fixed, this path has lerigtiihe/’'th node on this
path is denoted; , (see plate diagram on the left). Then, for every detectighérimage, we samplg ; — a level in the taxonomy — from a
uniform multinomial distribution over thé nodes on this path. The node from which this detection isig¢ee is ther: = ¢; ¢, ,. We then
pick a topicz; 4 from 7. — the distribution over topics at that node. Finally, we packisual word from the multinomial distributiaﬁziyd,
associated with topie; 4. The conditional distributions in the generative process @ree~ NCRR), 7. ~ Dir”[a], ¢ ~ Dir"V[¢].
i~ Mult(1/L), zi,g ~ Mult(me, , ), wia ~ Mult(¢z, ,)

3. Inference values. The necessary counts are described Béxtis the
number of detections in imagessigned to level. N; ; ; is

Below, we describe the inference technique that was usecdthe number of detections in imagessigned to level and

in our experiments. The goal of inference is to learn the topic . N;Ef’d) is the number of detections whose visual

structure of the taxonomy and to estimate the parametequord is w assigned to topi¢ across all images, excluding
oef_:)r;e modell_(suchha}sﬁ). l'll'he ogera!l approaclh |sfto ”SE the current detectiod in imagei. As usual, a dot in place
Iobs sampling, which allows drawing samples from the of an index indicates summation overthatindex]\s?)(“d)

posterior distribution of the model’'s parameters given the is the total number of detections assigned to teygixclud-

data. Taxonomy structure and other parameters of interest NP , 2L
; ing the current detectiod in imagei). m_* is the number
can then be estimated from these samples. Compared to the

sampling scheme used for NCRH,[we augmented Gibbs of images that go through noden the tree, excluding the

; : =(i,d) ; i ,
sampling with several additional steps to improve conver- c_urrent Imagei. N 1S the m_meer of detections as
gence. The details are given below, but the remainder ofSignedto F‘F’de andtopict, echudm_g the currentdetecﬂon
this section may be skipped on first reading. (i,d). N is the number of detections assigned to nede

. o _ and topict, excluding all detections in the current image
To speed up inference, we marginalize out the variables _. —(i,d)

. . Finally, N. " is the total number of detections assigned
m. andg¢,. Gibbs sampling then produces a collapsed pos- ’ . o iy
A . . to nodec, excluding the current detectidn, d), andN_" is
terior distribution over the variables 4, ¢; ., andz; 4 given ¢

. the total number of detections assigned to nedgcluding
the observations.

) . ~ all detections in image. In terms of these counts we can
To perform sampling, we calculate the conditional distri- §erive the following conditional distributions:

butionsp(¢; 4 = ¢|resY (the probability of sampling a level

¢ for detectiond in imagei given values of all other vari- —(i,d)
Qv + Nci,l:Zi,d

ables)p(z; 4 = z|resh (the probability of sampling a topic p(li g = llresh : (1)
z for detectiond in image:) andp(c; |resh (the probabil- ' aT + chfjjfi)

ity of sampling a path for imagéthrough the current tax-

onomy; note that this includes the possibility to follow an (i)
tgmstmg pa_Lth, as well as to create a new path). These condi- (20 = 2lrest (a " N;,(Z?d),z) s Nz,zjifd @)
ional distributions, as usual, are expressed in termswhto tid W+ sz .d)
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Figure 3. The taxonomy learned from 300 pictures (collextida4000, 144000, and 157000) from the Corel dataset. Tapeikire
taxonomy shown as a tree (see also Figl)reThe area of each node is proportional to the number of imageng that node. There are
two main groups (A and B), which at the next level split intaensmaller subgroups (1 — 9). Each of these splits into vellggmoups
of less than 10 images each at the last level; these are drfriti@ the figure for clarity. Below the tree, the top row of iges (marked 1)
shows the information represented in the leaf node 1. Thetfiirse pictures are the three images in that node to whicmthael assigns
the highest probability. The next picture is a ‘quilt’ thaibsvs schematically the image model learned at that nodeitiirly, it represents
the node’s ‘understanding’ of what images look like (see épgix for details). As can be seen, green-yellow hues arargorhin this
node. Indeed, the images assigned to the node have grdew-gsldominant colors. Finally, on the right, either theg&rmost prominent
topic in that node is shown (if the probability of that topitthe node is above 80%), or (if the top topic takes up less 8&a of the
probability mass), the two most probable topics are showathBopic is a distribution over words, and the display fartetpic shows
the visual words in the order of decreasing probabilitysHiive words are shown. The images at the bottom representshal words.
Each is divided into four quadrants (according to the nundfespatial bins used). Three out of four quadrants are chasshed, while
the quandrant that represents the correct spatial bin &giren word is filled with the corresponding color. The heighthe vertical bar
above each word is proportional to the frequency of the worithé current topic. The most popular topic indeed reprasgrgen-yellow
colors. Rows 2—9 show information for the other leaves imailar format. Nodes R, A, and B are shown in Figdre
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wherel][-] is the indicator function. s e <
The first two equations have obvious intuitive meaning. § % @ & §

For example, €q.2) consists of two terms. .'I;he first term Figure 4. Information shared at the top levels of the Conebita
is (up to a constant) proportional tONc?FeZ;Yd),z- Here omy. Rows A and B represent corresponding intermediatesiode
c = ¢y, , is simply the category node to which the de- from Figure3. Row R corresponds to the root. Each row shows the
tection in question (namely, detectidrin image:) is cur- quilt image for the node (left), and then one or two most papul
rently assigned. Thug}f;y’d) is just the number of other topics associated with the node. As can be seen, node A egpises
detections already assigned to topicThe topics thus have ~ 9reen-brownish hues. Indeed, these seem to be shared afreong t
a clustering property: the more detections are already in aSX child subgroups (rows 1-6 in Figu. Node B represents
topic, the more likely another detection is to be assigned to It|)ght blue colors in the top part of the image and da”‘ef bm&'e
the same topic. The second term in €2} ié (again, up to ottom part. Indeeq, |.ts three sqbgroups (rows 7-9 in Figyre
. . i 3 share these color distributions. Finally, the root repnésenostly
the priore) the fraction which the current visual word (e. g. black, which is common to all images in the collection.
visual word 3 ifw; 4 = 3) takes in the topie. This term en-
courages detections which are highly probable under topic
z, and penalizes those which are improbable. Overall, eq.not guaranteed. To restore detailed balance, we only use the
(2) is quite similar to the Gibbs sampling equation in starn- proposed sampling method to initialize the model. After a
dard LDA [2, 15, 5]. specified number of iterations (typically, 300), we revert t
The last equation (eq.3)) is harder to understand, but the proper Gibbs sampling scheme, which is guaranteed to
it's quite similar to the corresponding equation in NCRP converge to the correct posterior distribution.
[3]. The first term represents the prior probability of gen-
erating path in the tree given all other paths for all other 4. Experiments
images according to the NCRP prior. Note that this prior is
exchangeable: changing the order in which the paths were
created does not change the total probabiiily Therefore,
we can assume that the current path is the last to be gener,, . .
ated, which makes computing the first term efficient. The 4.1 Experiment |- Corel
second term represents how likely the detections inimiage  Color is easily perceived by human observers, making
are under the path color-based taxonomies easy to analyze and interpret. Our
A final detail in the inference is that the probability of a first experiment is therefore a toy experiment based on
path for an imagep(c;,. = c|resy, is significantly affected  color. Experiments on a more realistic dataset are reported
by the level assignments of the detections in that image (i.below.
e., by the values df _variables). The reason is that at early A subset of 300 color images from the Corel dataset (col-
stages in sampling, multiple paths may contain essentiallylections 14000, 144000, and 157000, selected arbitrarily)
the same mixture of topics, but at different levels. These was used. The images were rescaled to have 150 rows, pre-
paths would have a high probability of merging if the im- serving the aspect ratio. The visual words were pre-defined
age were allowed to re-assign its detections according toto represent images using ‘space-color histograms’. Two
the distribution of topics in levels on each path. To improve spatial bins in the horizontal and two bins in the vertical di
convergence, we therefore perform several (20 in our ex-rections were used to coarsely represent the position of the
periments) sweeps of re-samplidg, for all detections in ~ word, and eight bins for each of the three color channels
the current image before computing the second term in eq.were used. This resulted in a total®f8 - 8 - 2 - 2 = 2048
(3). Note that this re-assignment 65 is tentative, used visual words, where each word represents a particular color
only to compute the likelihood. Once a path is sampled, (quantized into 512 bins) in one out of four quadrants of the
the level assignments are restored to their original values image.
This sampling scheme works well in practice, but formally 500 pixels were sampled uniformly from each image and
it violates properties of Gibbs sampling or MCMC (namely, encoded using the space-color histograms. The proposed
the detailed balance property), and therefore convergence TAX model was then fitted to the data. We used four levels

In this section, we evaluate the proposed model experi-
mentally.



for the taxonomy and 40 topics. The remaining parameters Unsupervised Supervised
were set as followsy = 0.01, = 0.01, o = 1. These val- LDA - 64% [5]
ues were chosen manually, but in the future we plan to ex- TAX 58% 68%
plore ways of setting the values automaticailyl4]. Gibbs Table 1. Categorization performance on the 13 scenes daTage
sampling was run for 300 iterations, where an iteration cor- row: LDA. Bottom: the proposed TAX model. Left column: unsu-
responds to resampling all variables once. The number 300Pervised. Right column: supervised. Higher values ingittter
was selected by monitoring training set perplexity to deter Performance. As can be seen, supervised TAX outperformarsup
mine convergence. vised LDA (see sectiof for discussion).

The resulting taxonomy is shown in Figuse The main
conclusions are that the images are combined into cohertraining image were estimated as follows:
ent groups at the leaves, and that the topics learned by the

- €+ Npw _ a+ Nt

leaves represent colors that are dominant in the correspond A R = ———tt
ing groups. ’ eW+ Ny 77 aT+ Nig

) Figure4 shows information repre_sented l?y tl'_1e INEIMe- 6 first expression estimates the means of the correspond-
diate nodes of the taxonomy. This information is therefore ing model parameters,. The second expression is the esti-

shared by the subgroups at the bottom levels. The main CONnate of the distribution over topics,, at levell in the path

clusions are that each intermediate node learned to reprezq, imagei, using only the detections in image In terms
sent information shared by that node’s subgroups, and, con- '

O , _of these expressiong(j|i) can be computed as follows:

versely, that subdivisions into groups and subgroups arise . Bjli) P

based on sh.arlng.of common propertu_es. p(jli) = H Z cgt,wj,ﬁi,z,t (5)
To make it easier to visualize what is represented by the T

taxonomy, Figurel shows the same taxonomy as in Figure
3, but with quilt image shown at every level. The product is over all detectiomsin the test image, and

the sum is ovef andt, all possible level and topic assign-
4.2. Experiment 11: 13 scenes ments for each detection.
We used these probabilities to determine similarity be-

In this section_ we describe an experiment carried out 0N y\een a test image and all training images. Seven training
a more challenging dataset of 13 scene categoilesle jmages most similar to a test image were retrieved, and ma-

used 100 examples per category to train a taxonomy modeljqity yote was used among these seven images to catego-
The size of the images was rougfiy0 x 350 pixels. From  1j;¢ the test image. Using this method, the categorization

eachimage we extracted 500 patches of sizeZDby sam- a5 correct 58% of the time (chance performance would be
pling their location umform_ly at random. This resulted in 554t 8%). For comparison, 64% average performance was
650 000 patches from which 100 000 were randomly Se- ghiained in ] using a supervised LDA model, which is also
lected. For these 100 000 patches SIFT descriptofp [  pased on the bag-of-words representation. Notice that the
were computed and clustered by running k-means for 100 ethod in b] uses supervision to train the model. Adding
iterations with 1000 clusters. The centroids of these 1ooosupervision to the proposed TAX model s trivial: in Gibbs

clusters defined the visual words of our visual vocabulary. sampling, we simply disallow images of different classes to
The 500 patches for each image (again, represented as SIFfe i the same path. With this modification, a supervised
descriptors_) were subsequently assigned to the closest Vi'taxonomy is produced, which achieves 68% correct recog-
sual word in the vocabulary. The proposed TAX model pition (again, compare to 64% correct if{). These results
was then fitted to the data by running Gibbs sampling for gre symmarized in Table. The current state-of-the-art is

300 ite_rations. We u_se@ four levels for the taxonomy and g1qy [11] on an extension of the 13 scenes dataset, using a
40 topics. The remaining parameters were set as f°”°WS5representation much more powerful than bag-of-words.
v = 100, ¢ = 0.01, « = 1. The taxonomy is shown in

Figures. o 5. Related work

It is desirable to have a quantitative estimate of the qual-
ity of the learned taxonomy. In order to provide such a  NCRP was introduced ir3], but never applied to visual
guantitative assessment, we used the taxonomy to definelata. In computer vision literature, mostly supervised tax
affinity between images, and used it to perform categoriza-onomies were studied| 5, 18]. In addition, in [] the tax-
tion. Categorization performance is reported below. The onomy was constructed manually, while i [L8] the tax-
categorization was performed as follows. First, the taxon- onomy was never used for image representation or catego-
omy was trained in an unsupervised manner. Thepli), rization. In contrast, TAX represents images hierarciycal
the probability of a new test imagegiven a training image  and we show that this representation improves categoriza-
1 was computed. For this, the parameters pertaining to thetion performance.

(4)
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Figure 5. Unsupervised taxonomy learned on the 13 scenaséatTop: the entire taxonomy shown as a tree. Each catisgmior-coded
according to the legend on the right. The proportion of aigieelor in a node corresponds to the proportion of imagesetthresponding
category. Note that this category information was not usbdminferring the taxonomy. There are three large groupskedsA, B, and
C. Roughly, group C contains natural scenes, such as fandstm@untains. Group A contains cluttered man-made sceneb, as tall
buildings and city scenes. Group B contains man-made sdbaesre less cluttered, such as highways. These grougsrdplifiner
sub-groups at the third level. Each of the third-level gsplits into several tens of fourth-level subgroups, tgftycwith 10 or less
images in each. These are omitted from the figure for claBgtow the tree, the top row shows the information represkimtéeaf 1 (the
leftmost leaf). Two categories most frequent in that nodeeveelected, and two most probable images from each catagpshown. The
most probable topic in the node is also displayed. For thaittsix most probable visual words are shown. The displayeé&zh visual
word has two parts. First, in the top left corner the pixesevaverage of all image patches assigned to that visual wattbivn. It gives
a rough idea of the overall structure of the visual word. Baraple, in the topic for leaf 1, the visual words seem to regné vertical
edges. Second, six patches assigned to that visual wordsekseted at random. These are shown at the bottom of eachl weud, on
a2 x 3 grid. Next, information for node 2 is shown in a similar forin&inally, the bottom row shows the top two topics from node A
which is shared between leaves 1 and 2. Both leaves haverdftdpic 1) and horizontal bars (topic 2), and these areessnted at the
shared node.

In [1], a taxonomy of object parts was learned. In con- defined, and without this NCRP performed poorly. In con-
trast, we learn a taxonomy of object categories. trast, in TAX the same set of visual words is used through-
out the taxonomy, and different representations at differe

Finally, the original NCRP model was independently ap- levels emerge completely automatically

plied to image data in a concurrent publicatiarf]] The
differences between TAX and NCRP are summarized in
section2. In addition, [L6] uses different sets of visual @, Discussion

words at different levels of the taxonomy. This encourages

the taxonomy to learn different representations at differe We presented TAX, a nonparametric probabilistic model
levels. The disadvantage is that the sets had to be manuallyor learning visual taxonomies. In the context of computer



vision, it is the first fully unsupervised model that can earga No. 0535278 and 11S-0535292, and by ONR MURI grant
nize images into a hierarchy of categories. 00014-06-1-0734.

Our experiments in sectioh 1 show that an intuitive hi-
erarchical representation emerges which groups the imagefRRefer ences
into intuitively related subsets. In sectidn2, a compari-
son of a supervised version of TAX with a supervised LDA
model is presented. The two models are very similar over-
all; in particular, both use bag-of-words image representa
tion, both learn a set of topics, etc. The fact that supedvise
TAX outperforms s_upgrvised LDA therefore suggests thata [3] D. M. Blei, T. L. Griffiths, M. I. Jordan, and J. B. Tenen-
hlerarchlcal organlzatlon better fits the natural struetof . baum. Hierarchical topic models and the nested chinese
image patches and provides a better overall represenfation  restaurant process. MIPS 2004.2, 3, 5, 6
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