
Active Object Recognition on a Humanoid Robot

Björn Browatzki, Vadim Tikhanoff, Giorgio Metta, Heinrich H. Bülthoff and Christian Wallraven

Abstract— Interaction with its environment is a key requisite
for a humanoid robot. Especially the ability to recognize and
manipulate unknown objects is crucial to successfully work in
natural environments. Visual object recognition, however, still
remains a challenging problem, as three-dimensional objects
often give rise to ambiguous, two-dimensional views. Here,
we propose a perception-driven, multisensory exploration and
recognition scheme to actively resolve ambiguities that emerge
at certain viewpoints. We define an efficient method to acquire
two-dimensional views in an object-centered task space and
sample characteristic views on a view sphere. Information
is accumulated during the recognition process and used to
select actions expected to be most beneficial in discriminating
similar objects. Besides visual information we take into account
proprioceptive information to create more reliable hypotheses.
Simulation and real-world results clearly demonstrate the effi-
ciency of active, multisensory exploration over passive, vision-
only recognition methods.

I. INTRODUCTION

One major difficulty in computational object recognition
lies in the fact that a 3D object can be viewed from an
infinite number of viewpoints. Indeed, objects with different
3D shapes often share similar 2D views. Humans are able to
resolve this kind of ambiguity easily by producing additional
views through object manipulation or self movement. In both
cases the action made provides proprioceptive information
that is closely linked to the visual information retrieved
from the obtained views. This mode of exploration can be
observed already very early in infants, when they start to
interact with objects in their environment. Following this
principle, we propose an active method for a humanoid robot
that allows an efficient in-hand object exploration and a
perception-driven recognition process.

An object is placed in the hand of the robot and during
the recognition process it is rotated to produce new views.
The object manipulation sequence is not predefined and
will be different for every object. For a given, unknown
object, it is most efficient to look for a view that yields the
most additional information for discriminating it from similar
ones. Hence, based on the current view, the associated object
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Fig. 1: The iCub humanoid robot. Implementation and eval-
uation platform of the presented object recognition method.

probabilities, and the history of actions, a motion is selected
that is expected to yield the highest information gain. In our
case, actions consist of the rotation of an object in an object-
centered coordinate system and involve the whole kinematic
chain from hand to eye. The actions are executed using a
learned inverse kinematics in a 15 degree-of-freedom space.

Hypotheses about the object in question are created and
updated as the recognition progresses. We define a hypothesis
as an estimate about an object and the viewpoint onto this
object, which gives rise to a specific 2D view. A viewpoint
is defined as a location on a view sphere centered around
the object. We adopt probabilistic Monte Carlo localization
methods to maintain a high number of hypotheses in par-
allel. By running particle filtering, regarding hypotheses as
particles, we can take into account the viewpoint changes
in the form of proprioceptive information obtained form the
robot arm. Object probabilities are calculated based on these
hypotheses and an action is selected which is expected to
minimize the uncertainty of the current estimate.

II. RELATED WORK

Our work shares the philosophy of the active vision
paradigm. It has been shown [1], [2], [3] that by enabling
an observer to actively control the sensory input, many
vision ambiguities can be resolved. This fundamental idea
has soon been adopted by the robotics community and led to
a number of systems that implement active object exploration
and recognition methods. First approaches tried to move the
camera to new locations that yield informative object views
[20]. For example, Paletta and Pinz [12] propose a vision-
only, camera-based system that is in spirit similar to ours. In
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Fig. 2: System components forming a perception action loop.

this work, a recognition sequence is searched that minimizes
the number observations needed to achieve a confident object
hypothesis. In doing so, the object is placed statically on a
turn table and the camera is moved around it on a view
sphere.

In [9] the robot acquires information on objects in its
vicinity by using its body to explore and probe the envi-
ronment. Omrčen et al. [11] address the basic sensorimotor
processes that have to be provided to allow a dexterous
exploration of an unknown object. In [19] and especially [18]
active methods have been studied that are comparable to our
approach in the sense that objects are inspected from multiple
view points to resolve ambiguities and to distinguish between
objects. However, these systems lack the direct interaction
with the object and are therefore not able to take into account
the additional cues active exploration on a humanoid robot
offers. The benefit of incorporating proprioceptive cues, for
example, is demonstrated in Sec. VI.

III. PERCEPTION DRIVEN OBJECT RECOGNITION

The recognition system we propose can be split into two
fundamental parts. One part is the perception side which
comprises components for data acquisition and reasoning and
the other part is the action side that consists of the robot
hardware and controllers. We link perception and action
directly together and one is determined by the outcome of
the other. This principle is often referred to as Perception-
Action-Loop and is shown in Figure 2. In the following we
discuss some of the components that need to be provided
in order to close this loop. Subsequently the object learning
and recognition modules will be presented in Sec. IV and V.

A. The iCub robot platform

The iCub (Fig. 1) is an open-source humanoid robot
designed as a result of the RobotCub project, a collaborative
European project aiming at developing a new open-source
cognitive robotics platform. Measuring 105cm in total height,
the iCub robot is approximately the same size as a three
year old child. The iCub is the ideal platform to undertake
research in cognitive systems [7], [14], [15], as it has fully
articulated hands, which allow for dexterous manipulations,
as well as a head-and-eye system, which permits very precise

and accurate movements that are required for vision. Fur-
thermore, the iCub robotic platform is equipped with visual,
vestibular (for balance and spatial orientation), auditory, and
haptic sensor capabilities.

B. Viewpoint Control

To explore an object systematically one needs to be able
to describe already seen viewpoints and desired viewpoints
in an efficient and compact way. However, the joint space
of a humanoid robot that needs to be controlled in order
to achieve a desired viewpoint is usually high dimensional.
In our case, the whole kinematic chain that can be used to
manipulate an object within the field of view consists of
15 degrees of freedom (DOFs): 7 DOFs for the arm and
wrist, 3 DOFs for the torso, and 5 DOFs for head and eye
[13]. In principle, one could fix some of these joints and,
for example, only move the wrist while keeping a steady
gaze onto the hand. However, due to motor constraints the
space of accessible viewpoints would be very limited. In
our approach we therefore incorporated all possible DOFs
to increase the range of motion as much as possible and to
ensure that we can generate a high number of object views
without re-grasping.

We describe a viewpoint in terms of two parameters,
azimuth ϕ and elevation θ. They are defined in respect to
the reference frame N of the robot hand and the gaze vector
G between hand and eye as

θ = acos(G ·Nz), (1)

ϕ = acos(G ·N ′x). (2)

N ′x denotes the vector Nx after tilting the plane Nx×Ny to
be orthogonal to G. To improve readability, in the following
we will refer to (θ, ϕ) as a viewpoint φ.
We employ a linear-weighted nearest neighbor search to map
from viewpoint φ to joint states q. Sample points for the
search are collected through random movement. Each sample
consist of the current gaze angles and the joint angles of the
DOFs we are interested in.
To obtain a configuration in joint space that leads to a
desired viewpoint we search through the recorded samples
and calculate the weighted joint average

q̂ =

N∑
i

Wiqi, (3)

from the N nearest neighbors according the sample weights
Wi given by:

Wi = wΦΦ 〈φi, φ〉+ wX ‖xi − x‖+ wq ‖qi − q‖ , (4)

where Φ 〈·〉 denotes the angle between two gaze vectors. The
second and third terms are optional and comprise additional
optimization tasks. The middle term optimizes for a low
euclidian distance to a desired location in 3D space. The
last term penalizes large changes in joint space to reduce
jerkiness. These optimization goals are assigned individual
weights wΦ, wX , and wq .
The calculations are simple and run at real-time performance



even for a large number of samples. To speed up computation
even further we select a subset of unweighted samples solely
based on viewpoint φ using an approximate nearest neighbor
search to only take these samples into account for weighting.
The resulting poses q̂ produce viewpoints with a deviation of
usually less than 3◦ from the desired viewpoint. The accuracy
is sufficient since viewpoint changes below this margin are
not expected to cause relevant changes in the image.

C. Image segmentation and feature extraction

The object in the hand of the robot occupies only a small
area of the image obtained from the robot camera. Using
the whole image for recognition would result in a poor
recognition performance, as the scene background would
introduce a high amount of noise. However, since the gaze
is permanently updated to keep the object in focus, we can
safely assume that the object is always located approximately
in the center of image. An obvious improvement therefore
presents itself in cropping a sub image around the image
center. To remove background area from the image we train
a Gaussian Mixture Model (GMM) (see e.g. [4]) on a small
region around the selected sub image. GMMs are commonly
used for background removal tasks. They are specified by K
normal distributions Nk(µ,Σ) with mean µ and covariance
Σ as well as a weight wk. In contrast to most background
removal approaches, we do not create a background model
for each image location. Since the camera is moved we
need to be able to deal with a quickly changing background.
Therefore we create a model on each incoming image and
directly apply it to the current view.

In Fig. 3 the training area is depicted. We take pixel
intensities in CIE L*a*b* color space as input samples
for calculating N1,..,K(µ,Σ). The optimization is carried
out using Expectation-Maximization (we rely on the C++
implementation from the OpenCV library [6]). As we only
use a low number of pixels, training is completed within
approximately 50ms on a dual-core 2.5 GHz mobile CPU.
The trained GMM is then applied to the sub image containing
the object. The probability PBGR of an image pixel I being
considered as background is computed by evaluating the
weighted PDF of the multivariate distribution defined by:

PBGR(I) =

K∑
k=1

wk√
|2πΣk|

· exp
1
2 (I−µ)T Σ−1

k (I−µ) (5)

The resulting probability map is then scaled to the interval
[0, 1]. This is done because we assume that there is always
an object present in the image. Hence, some part of the
image always should to be classified as object. We consider
all image locations with background probability smaller
than a fixed threshold as occupied by the object. Finally,
morphological operations are applied to remove clutter and
artifacts.
To describe the image content we extract two types of
features from the segmented object images. We rely on the
well known Pyramids of Histograms of Oriented Gradients
feature (PHOG) [5] (2 levels, 20 orient. bins) to capture
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Fig. 3: Segmentation process: A background model is trained
on the area between the rectangles and applied to the area
inside the smaller rectangle. Low values in the resulting
probability map indicate the presence of an object.

information on object shape and use color histograms in
CIE L*a*b* space (15x15 bins for a* and b*) as a basic
appearance descriptor.

IV. OBJECT EXPLORATION AND LEARNING

For view-based three-dimensional object recognition, sam-
ple views need to be acquired from various viewpoints. These
collections of views are then converted into representations
of objects or object classes. It is desirable that the acquisition
of these views is performed in an efficient way in terms of
exploration time and motor actions. We address this point by
keeping track of already seen viewpoints and selecting target
positions that minimize

φt+1 = argminφ′e(φ
′, φt) (6)

with
e(φ′, φt) = ατ(φ′) · (1− α)Φ 〈φ′, φt〉 . (7)

Eq. (7) results in low values for viewpoints that are close
to the current viewpoint but add as much new information
as possible. The parameter α controls how fast the object
is moved to new orientations. Low values result in a slow
motion in which the object is examined carefully. High
values, in contrast, lead to a coarse but fast exploration. The
function τ(·) in Eq. (7) defines how well a certain view has
been seen before and is defined as

τ(φ) = max
v∈V

1− Φ 〈φ, φv〉
fov

, (8)

with fov denoting the angle of the field-of-view and V being
all previously visited positions on the view sphere. We obtain
values in the interval [0,1] with 0 for a completely unknown
view and 1 for an exact viewpoint match.

Recording the whole input stream without filtering would
result in a vast amount of data that is intractable, both
in terms of memory consumption and computational effort.
However, keeping too few views would lead to a low recog-
nition performance. To select only a representative subset
of views from the continuous stream of input images we
extract certain keyframes [17] based on the amount of visual
change occurring. We measure the change by converting
the image to a lower dimensional feature representation and



Fig. 4: Example of an exploration sequence executed to learn
a new object. The dashed red line shows the exploration path
on the view sphere. Keyframes are marked by black dots.

then by computing the feature distance between subsequent
images. This representation should be insensitive to clutter
and artifacts introduced through preprocessing steps such as
segmentation. We obtained good results by converting the
images to CIE L*a*b* color space and selecting high energy
frequencies of the Fourier-transformed color planes. A frame
is marked as keyframe if the feature distance to the last
keyframe drops below a predefined threshold. Each keyframe
is annotated with the viewpoint is was extracted on. A few
dozens of these keyframes are usually sufficient to represent
the appearance of an object.

V. ACTIVE OBJECT RECOGNITION

Active recognition in the context of a humanoid robot
differs from static (multi-view) object recognition scenarios
by offering two valuable benefits. First, the object in question
can be manipulated. Thus additional information can be
generated by creating new views. Second, by incorporating
proprioceptive information from joint states we do not have
to rely on a unrelated set of views but can also take into
account the viewpoint differences that caused the change in
appearance.

Each view can be treated as an observation that adds
information about object probabilities. Sequences of ob-
servations can be combined to form joint distributions of
object probabilities. However the questions arises of how
to calculate object probabilities and how to select actions
that lead to short sequences with discriminative views. This
problem is addressed in the following.

A. Recognition by localization

Object recognition in this context can be regarded as a
localization problem in which the goal is to find the most
probable location on the view spheres of the objects. We
define such a location as x = (o, φ), with o determining the
object and φ defining the view angle. We estimate the prob-
ability distribution over all positions x at every recognition
iteration t. We can calculate the posterior probability of x

given a sequence of actions a and observations z as follows:

p(xt) = p(xt|z1:t, a1:t)

= p(zt|xt) ·
∫
p(xt|xt−1, at) · p(xt−1)dxt−1. (9)

Equation (9) defines the posterior of a recursive Bayesian
filter. As the exact solution is intractable, we employ a parti-
cle filter as a Monte Carlo approximation. The particle filter
achieves a discrete estimation of the true distribution using a
large set of weighted samples, or particles {xi, wi}Ni=1. The
approximated posterior can be stated as

p(xt) ≈ p(zt|xt)
N∑
i=1

wit · p(xt|xit−1, at). (10)

Our particle filter implementation is based on the bootstrap
filter proposed in [10] and outlined in Alg. 1. We predict
new particle positions by taking into account the viewpoint
change from the last observation. It is important to note
that this information is acquired through proprioception by
the active robot. After adding Gaussian noise N (µ,Σ), the
particle update rule is given by

xt ← q(xit|xit−1, at) = xi,φt−1 + at +N (µ,Σ). (11)

New particle weights are computed based on the expected
view at a certain location on the view sphere. This view
is estimated from the extracted keyframes (see Sec. IV). To
obtain an estimate on all possible particle positions we inter-
polate keyframes on points that were not directly observed.
The interpolation is done by calculating a weighted average
from the k-nearest neighbors. The weight is set proportional
to the angular distance to the neighboring keyframes. The
interpolation needs to be done only once per object and
can be precomputed offline. Using the resulting maps of
view estimates Vest[·]Kk=1 as lookups, the likelihood of an
observation with feature vector z given a particle xi can
efficiently be calculated by

p(z|xit) = (Vest[xφ]xo − z)2, (12)

and the particle weight updated by

wit = wit−1 · p(z|xit). (13)

Since the view sphere is limited due to motor constraints,
we need to decide on how to handle particles that leave
the part for which we have gathered data. We set these
particles to low weights but do not discard them entirely.
It is always possible that the object is located differently
in the hand of robot and we currently observe views that
were not visible during training. Assigning lower weights,
however, is necessary since otherwise we would maintain
too many hypotheses that will not be updated in the future.
Low weights will eventually result in a higher probability of
being discarded during resampling.
To remove particles with low weights we resample the
particles in each iteration. We follow the sampling and
importance resampling (SIR) procedure [10] and replace
each particle with another particle that is picked proportional



to its likelihood of giving rise to the current observation (Eq.
12). We found that it is important to base the resampling
only on the current view instead of taking into account past
iterations. This way it is avoided that, in the absence of
discriminative input, the filter converges to an arbitrary mode.
After resampling, the object probabilities P1,..,K are calcu-
lated by integrating the weights of the particles associated
with object k,

P kt =

∑N
i=1 δk,πiw

i
t∑N

i=1 w
i
t

. (14)

In Eq. (14) δi,j refers to the Kronecker delta returning 1 for
i = j and 0 otherwise. We can now calculate the entropy Ht

of the current object probability distribution,

Ht =

K∑
k=1

P kt logP
k
t . (15)

Ht describes the uncertainty of our current predictions and
serves as an indicator of when a confident assumption can
be made. We furthermore use Ht as optimization target for
determining the next action as described in the following
subsection.

Algorithm 1 Particle filter object recognition

for k = 1→ K do . Initialization
for n = 1→ N/K do

i← k · n+ n, πi ← k
Draw particle xi randomly from view sphere
of object k.
Assign initial weights:

wi0 = g(y0|xi0)
end for

end for
t← 0
repeat . Iteration

t← t+ 1
Execute action at.
Aquire observation zt.
Update particles:
for i = 1→ N do

x̃it ← q(xit|xit−1, at)

w̃
′i
t ← wit−1p(zt|x̃it)

end for
Normalize weights:

w̃it ← w̃
′i
t−1/

∑N
j=1 w̃

′j
t , i = 1→ N

Resample particles:
Select N particle indices ji = 1→ N propor-
tional to particle likelihood of current observation:

ji ← l ∝ p(zt|x̃l
t)∑N

j=1 p(z
j
t |x̃

j
t)
, l = 1→ N

xit ← x̃jit , w
i
t ← w̃jit

Calculate object probabilities:
P kt =

∑N
i=1 w

i
tδk,πi/

∑N
i=1 w

i
t , k = 1→ K

Calculate entropy:
Ht =

∑
k=1 P

k
t logP

k
t

until Ht < Hdes

B. Action selection
We are looking for an action a that is expected to lead to

a viewpoint that maximizes the expected information gain.
This can be formulated as

a = arg max
ã∈A

E[Iã] = Ht − E[H ã
t+1], (16)

where Ia denotes the information gain by executing action
ã. Ht is the current entropy across object probabilities. The
entropy H(X) = −

∑
x∈X x log x of a random variable X

can be utilized to indicate the information content of our
current estimate. To maximize the information gain we need
to find an action that minimizes the expected entropy. The
expected entropy can be calculated by integrating over the
range of expected observations m produced by action ã

E[H ã
t+1] =

∫
m

H(Pt(m))dm. (17)

We approximate Eq. (17) by sampling observations z1,..,M

at view sphere locations x̃ = g(x̃|xt, ã) from our view
estimation map Vest. Consequently E[Ht+1(ã)] can be stated
as

E[Ht+1(ã)] ≈ −
M∑
m

H(Pt(m))
p(zm|ã)∑
m p(zm|ã)

. (18)

Object probabilities Pt(m) defined previously in Eq. (14) are
dependent on the set of particles x̃ propagated by action ã
and the sampled view zm:

P kt (m) =

∑N
i δk,πi

wip(zm|x̃i)∑N
i wip(zm|x̃i)

. (19)

We assume an observation zm to occur with a probability
only dependent on the position on the view sphere and
not being dependent on the action performed. Thus we set
p(zm|ã) = 1/M for all zm. This, however, does not imply
that actions do not affect the expected observations. The
sampling position of the observation still depends on the
action and its start position. Finally, after inserting Eq. (19)
into Eq. (17) we obtain

E[Ht+1(ã)] ≈ − 1

M

M∑
m

K∑
k

∑N
i δk,πi

wip(zm|x̃i)∑N
i wip(zm|x̃i)

· log

∑N
i δk,πi

wip(zm|x̃i)∑N
i wip(zm|x̃i)

(20)

Unfortunately, the evaluation of Eq. (20) is time-
consuming. We do, however, not necessarily need to know
the exact entropy values to find a favorable action. Instead,
we follow the reasoning in [8] and search for an action a
that leads to views that introduce a high amount of variance
across different objects

a = arg max
ã∈A

Dã ≈ E[Dã] =

N̂∑
i

N̂∑
j

(z̃i − z̃j) · κi,j (21)

with

κi,j =

{
α if i = j

β else
(22)



Fig. 5: Objects used for evaluation in the iCub simulator.
12 rectangular boxes with differently colored sides. Shown
are segmented keyframes used in the recognition process.

Fig. 6: Objects used for evaluation on the iCub. Six identical
brown plastic cups, of which five are modified with colored
tape.

For α = 1 and β = 0 we only take into account views that lie
on different objects. By modifying κ, however, we can steer
the algorithm towards discriminating between views within
the same objects. This is useful when the task consists less
of identifying objects but rather of determining the specific
object pose. However, even when the object pose is not of
interest it is beneficial to set β to a positive value. When
the recognition is approaching saturation, most particles will
then be located on one object.

VI. EVALUATION

As the actual grasping is not part of this study, we start
all experiments with the object already grasped and located
in the hand of the robot. To demonstrate the ability of our
system to distinguish even between highly similar objects,
we conducted evaluations in simulation and on the real robot
on objects that share many views. The objects used in the
experiments are depicted in Fig. 5 and Fig. 6 respectively.
Objects were learned as described in Sec. IV. Since looking
at the back of the hand is hardly desirable we restricted
the exploration to the upper hemisphere. Furthermore, as
noted earlier, the robot is not able to bring the hand into

all orientations a human is able to do. For example, it is not
possible to have the robot look directly onto its fingertips
from the front. We therefore limited the accessible area of
the view sphere for exploration as well as for recognition
to [0◦, 90◦] elevation and [140◦, 270◦] azimuth. During the
exploration phase, between 80 and 130 keyframes were
recorded per object in the automatic exploration mode.

For both experiments we conducted 20 recognition trials
for each object. 10 trials with planned actions using the
variance maximization scheme discussed in Sec. V and 10
trials with viewpoints randomly selected on the previously
defined part of the view sphere. We should note that picking
random positions on the view sphere does not lead to views
that are as random as setting random joint angles within
a certain range. By selecting view sphere positions, the
same poses will be available that were potentially obtained
during learning and can be set by the motion planning
algorithm. Using completely random joint or task space
positions would make object recognition even more difficult
and would not represent a viable baseline. After each trial,
a random position was set to ensure independence between
individual trials.

The recognition process was stopped when the entropy
dropped below 0.1 or 15 iterations were completed. The
particle filter was initialized with 75 particles per object—
uniformly sampled on the view sphere of each object. Motion
planning was performed taking into account the 300 highest
weighted particles. We distinguish actions up to a resolution
of ±1◦ on the view sphere and computation was speeded up
using a grid search on a recursive raster of 9x14 elevation
and azimuth cells. The total planning time was approximately
400ms per iteration.

To compare our approach against pure visual recogni-
tion, not taking into account proprioceptive information, we
performed k-nearest neighbor matchings with the recorded
keyframes. This was done for all trials, in parallel to the
particle filtering. We performed matchings using 1,3 and
5 neighbors. As the differences are marginal we only plot
results for 3 nearest neighbors.

A. Evaluation in simulation

To test the validity of our approach under controlled con-
ditions, we conducted an experiment on the iCub simulator
[16]. We created 12 rectangular boxes (Fig. 5) using common
3D modeling tools and assigned different colors to three of
the sides. Thus, all objects contain sides that are identical to
sides of other objects. This means that single views can easily
be confused. As the objects, however, are distinguishable
from other viewpoints, we expect that after some exploration
time enough information is gathered to correctly identify
most of them. Results are shown in Fig. 7 and Fig. 8. We see
that planned motion leads to more correct results and more
confident predictions. The latter is indicated by the much
faster decreasing entropy in Fig. 8. These findings could
be confirmed by the following real-world experiment on the
iCub robot.
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Fig. 7: Iteration accuracy in simulation.
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Fig. 8: Iteration entropy in simulation.

B. Real-world evaluation

For the experiment on the iCub we chose six brown plastic
cups with five of them marked at one location with colored
tape. This way they were distinguishable from the other
cups only from a very limited set of viewpoints. For two
of the cups, for example, we placed the marker inside the
cups. These cups can only be recognized by looking directly
inside—a challenging task when the movement is not pre-
programmed.

In Fig. 9 the recognition accuracy for all 6 objects is
plotted for the 15 iterations. We clearly see that planned
motion results in much higher recognition rates than those
achieved by random exploration. Explicitly taking into ac-
count proprioception yields an increase in accuracy only in
the case of random motion. This makes sense as the planned
exploration often does not perform much motion at all; for
many objects, an optimal viewpoint is achieved already after
a few iterations, and this view is maintained until recognition
is completed. We see, however, the benefit of the particle
filter that considers proprioceptive information when we
look at Fig. 10. Since accuracy does not tell us anything
about the speed and the confidence with which a result was
obtained, we also plot the entropy of object probabilities for
all iterations. Especially in the case of Fig. 10, it is clearly
visible how these two features are significantly improved by
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Fig. 9: Iteration accuracy using the iCub.
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Fig. 10: Iteration entropy using the iCub.

going beyond visual comparisons only.
If we look more closely at the results of individual objects,

we find that for particular objects the differences are substan-
tial. In Fig. 11 the accuracy for each object after 10 iterations
is shown. The unmarked brown cup (’Normal cup’), for
example, was recognized correctly only one time using
random, vision only exploration (chance level = 16.7%). We
found this effect also in the simulation experiments for the
object (white box) that bore no apparent mark with which
it could be identified. From the way, the experiment is set
up, it becomes clear that unmarked objects can only be
recognized by rejecting alternatives. This, however, can only
be achieved by reasoning across multiple observations and
regarding subsequent views in relation to each other.

Furthermore, it is very interesting to investigate which
viewpoints were visited during the recognition of individual
objects. In Fig. 12 we marked the view sphere positions for
each object during the 10 planned recognition trials. Dots are
scaled according to iteration number with the first iterations
represented by the smallest dots. We see that the distribution
is different for all objects. The upper (left) area in the plots
corresponds to positions in which a side view of the object is
obtained (here, for example, the side stickers could be seen)
the bottom righthand area contains the viewpoints that allow
to view into the cups. The region directly above indicates



Planned
PF

Planned
KNN

Random
PF

Random
KNN

0

20

40

60

80

100
A

cc
u

ra
cy

(%
)

Normal cup

Planned
PF

Planned
KNN

Random
PF

Random
KNN

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

Yellow/green inner border

Planned
PF

Planned
KNN

Random
PF

Random
KNN

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

Blue side sticker

Planned
PF

Planned
KNN

Random
PF

Random
KNN

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

Yellow/green inside bottom

Planned
PF

Planned
KNN

Random
PF

Random
KNN

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

Red inside bottom

Planned
PF

Planned
KNN

Random
PF

Random
KNN

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

Yellow/green side sticker

Fig. 11: Recognition performances for the six plastic cups
after ten iterations.
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Fig. 12: Observers viewpoints during 10 recognition trials.

poses in which the bottom of cup could no longer be seen,
but the inside rim was well visible. The patterns look similar
for the normal cup and for the two cups with modified
inside bottoms. This means that these objects were mostly
inspected by looking inside. In contrast, for the cup with
the blue sticker on the side, the robot only looked inside a
few times during the first iterations (indicated by small dots).
After rejecting the according hypotheses it concentrated on
observing the cup from viewpoints that quickly put the blue
sticker into focus.

VII. CONCLUSIONS

In this work we have implemented a perception-driven
object recognition process that allows a humanoid robot to
recognize even highly similar objects by actively resolving
ambiguities. We have demonstrated in simulation and in
real-life experiments that by predicting optimal viewpoints
objects can be identified much faster and more reliably.
In addition, we have shown that some difficult objects
can only be recognized by rejecting all possible alternate
hypothesis—again, this would not be achievable without
our active viewpoint planning. Finally, the incorporation of
proprioceptive information (that is, that we can work in the
joint angle space of the robot), also resulted in a significant
improvement over visual-only comparisons by speeding up
the recognition process considerably. In future work, we
will optimize this framework to deal with a large number
of concurrent hypotheses—after all, in typical use cases,
the robot will be expected to deal with a large number of

objects (and object categories). Finally, it might be possible
to extend our framework to a more abstract search space,
in which objects are disambiguated not by viewpoints but
by performing certain actions (such as taking an object,
and trying to fit it into one of several differently-shaped
slots). Perception-action skills like this will allow the robot to
become an active explorer and to learn about its environment
by interacting with it—similarly to the stages in infant
development.
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[11] D. Omrčen, A. Ude, K. Welke, T. Asfour, and R. Dillmann. Senso-
rimotor processes for learning object representations. In Humanoid
Robots, pages 143–150. IEEE, 2007.

[12] L. Paletta and A. Pinz. Active object recognition by view integra-
tion and reinforcement learning. IEEE International Conference on
Robotics and Autonomous Systems, 2000.

[13] U. Pattacini, F. Nori, L. Natale, G. Metta, and G. Sandini. An Experi-
mental Evaluation of a Novel Minimum-Jerk Cartesian Controller for
Humanoid Robots. Dynamical Systems, pages 1668–1674, 2010.

[14] G. Sandini, G. Metta, and D. Vernon. The iCub cognitive humanoid
robot: An open-system research platform for enactive cognition. 50
years of artificial intelligence, pages 358–369, 2007.

[15] V. Tikhanoff, A. Cangelosi, and G. Metta. Integration of Speech
and Action in Humanoid Robots: iCub Simulation Experiments. Au-
tonomous Mental Development, 3(1):17–29, 2011.

[16] V. Tikhanoff, P. Fitzpatrick, F. Nori, L. Natale, G. Metta, and
A. Cangelosi. The iCub Humanoid Robot Simulator. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, volume 1,
2008.

[17] C. Wallraven and H. H. Bülthoff. Object Recognition, Attention, and
Action, chapter Object Recognition in Man and Machine, pages 89–
104. Springer, Tokyo, Japan, 2007.

[18] K. Welke, T. Asfour, and R. Dillmann. Object separation using
active methods and multi-view representations. In IEEE International
Conference on Robotics and Automation, pages 949–955, 2008.

[19] K. Welke, T. Asfour, and R. Dillmann. Active multi-view object search
on a humanoid head. In IEEE International Conference on Robotics
and Automation, pages 417–423. IEEE, 2009.

[20] D. Wilkes and J. Tsotsos. Active object recognition. In Computer
Vision and Pattern Recognition, pages 136–141. IEEE, 1992.


