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Object Recognition --the

computer vision way
(slides credit: Fei Fei Li, Rob Fergus and Antonio Torralba, 2007)
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materi

b, thought, or action: an object of co\ //)
of a specific action or effort: the objecra—Ak
Grammar.
a. A noun, pronoun, 3oun phrase that receives or is affected by the 2
sentence.

b. A noun or substantivigeverned by a preposition.
Philosophy. Something int&§ible or perceptible by the mind.
Computer Science. A discrete item that can be selected and maneuvered, such as an onscreen

graphic. In object-oriented programming, objects include data and the procedures necessary to
operate on that data.
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How many object categories are there?
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So what does object recognition
involve?
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Object Categor|zat|0n




Challenges 1: view point variation

Michelangelo 1475-1564



slide creditizr S Ullman
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CORN FLAKES

* Lowe, et al. 1999, 2003

* Mahamud and Herbert, 2000

* Ferrari, Tuytelaars, and Van Gool, 2004
* Rothganger, Lazebnik, and Ponce, 2004
* Moreels and Perona, 2005
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History: early object categorization
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Turk and Pentland, 1991

Belhumeur, Hespanha, &
Kriegman, 1997

Schneiderman & Kanade 2004
Viola and Jones, 2000

Amit and Geman, 1999
LeCun et al. 1998
Belongie and Malik, 2002

Schneiderman & Kanade, 2004
Argawal and Roth, 2002
Poggio et al. 1993




‘__abject catego rizati—;)n:
the statistical viewpoint

p(zebra |image)
VS.
p(no zebra|image)

« Bayes rule:

p(zebra|image) p(image|zebra)  p(zebra)

p(no zebra | image) - p(image|no zebra) p(no zebra)
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posterior ratio likelihood ratio prior ratio




Object categorization:
the statistical viewpoint

p(zebra|image) p(image|zebra)  p(zebra)

p(no zebra | image) B p(image | no zebra) p(no zebra)
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posterior ratio likelihood ratio prior ratio

* Discriminative methods model posterior

 Generative methods model likelihood and
prior




Discriminative

p(zebra|image)

 Direct modeling of .
p(no zebra | image)

Decision Zebra
boundary ’—__\_/

Non-zebra




Generative
* Model p(image | zebra) and  p(image| no zebra)

Pi“-:%

p(image | zebra) | p(image|no zebra)

Low Middle

High Middle—>Low




Three main issues

* Representation
— How to represent an object category

* Learning
— How to form the classifier, given training data

« Recognition
— How the classifier is to be used on novel data




Representation

— Generative /
discriminative / hybrid




Representation

— Generative /
discriminative / hybrid

— Appearance only or
location and
appearance




Representation

— Generative /
discriminative / hybrid

— Appearance only or
location and
appearance

* View point

* [llumination
* Occlusion

» Scale

» Deformation
» Clutter

* efc.




Representation

— Generative /
discriminative / hybrid

— Appearance only or
location and
appearance

— lnvariances

— Part-based or global
w/sub-window




Representation

— Generative /
discriminative / hybrid

— Appearance only or
location and
appearance

— lnvariances

— Parts or global w/sub-
window

— Use set of features or
each pixel in image
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Learning

— Unclear how to model categories, so we
learn what distinguishes them rather than
manually specify the difference -- hence
current interest in machine learning




Learning

— Unclear how to model categories, so we
learn what distinguishes them rather than
manually specify the difference -- hence
current interest in machine learning)

— Methods of training: generative vs.
discriminative
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Learning

— Unclear how to model categories, so we
learn what distinguishes them rather than
manually specify the difference -- hence
current interest in machine learning)

— What are you maximizing? Likelihood
(Gen.) or performances on train/validation
set (Disc.)

— Level of supervision

* Manual segmentation; bounding box;
image labels; noisy labels

Contains a motorbike

wr=}




| 5 min break!




Bag-of-VWords models




Related works

Early “bag of words” models: mostly texture
recognition

— Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie &
Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003;
Lazebnik, Schmid & Ponce, 2003;

Hierarchical Bayesian models for documents

(pL.SA, LDA, etc.)

— Hoffman 1999; Blei, Ng & Jordan, 2004; Teh, Jordan, Beal &
Blei, 2004

Object categorization

— Csurka, Bray, Dance & Fan, 2004; Sivic, Russell, Efros,
Freeman & Zisserman, 2005; Sudderth, Torralba, Freeman &
Willsky, 2005;

Natural scene categorization

— Vogel & Schiele, 2004; Fei-Fei & Perona, 2005; Bosch,
Zisserman & Munoz, 2006
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Analogy to documents

Of all the sensory impressions proceeding to
the brain, the visual experiences are the
dominant ones. Our perception of the world
around us is based essentially on the

messages that rz

eyes. For a t the
retinal img N\t
o visua/fvisual, perception, \
upon wifetinal, cerebral cortex,

eye, cell, optical
nerve, image
ubel, Wiesel

have been able to demonstrate tha
message about the image falling on
retina undergoes a step-wise analysis
system of nerve cells stored in columns!
this system each cell has its specific fun
and is responsible for a specific detail in th?
pattern of the retinal image.

(£51bn) to $100bn this year, a threefold
increase on 2004's $32bn. The Commerce
Ministry said the surplus would be created by
a predicted 30% i . to $750bn,

exports, imports, US,
vuan, bank, domestic,

trade freely. However, Beijing has me
clear that it will take its time and tread

further in value.




A clarification: definition of “BoW

» Looser definition
— Independent features




A clarification: definition of “BoW”

Stricter definition

— Independent features
— histogram representation

>
Lap e

=
L




learnin recognition
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codewords dictionary
T " ™ -

feature detection
& representation
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|image representation Fan=ALS _‘:3"“'-

i Mo
category models > category

(and/or) classifiers decision
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* Regular grid
— Vogel & Schiele, 2003

— Fei-Fei & Perona, 2005 e g e e o g gy 4 £
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1.Feature detection zric] reoresentation

* Regular grid

— Fei-Fei & Perona, 2005
— Sivic, et al. 2005




1.Feature detection :nd representation

* Regular grid
— Vogel & Schiele, 2003
— Fei-Fei & Perona, 2005

* Interest point detector

- Fel Fel & Perona, 2005
— Sivic, Russell, Efros, Freeman & Zisserman, 2005

* Other methods

— Segmentation based patches (Bamard, D,_,.uyg,u,l,,u,
Forsyth, de Freitas, Blei, Jordan, 2003)




Compute
SIFT
descriptor

[Lowe’99]

Normalize
patch

Detect patches
[Mikoiaczyk and Schmid '02]
[Mata, Chum, Urban & Paidla, '02]
[Sivic & Zisserman, '03]

Slide credit: Josef Sivic







2. Codewords dictionary formation
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2. Codewords dictionary formation
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Fei-Fei et al. 2005
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What about spatial info?

 Feature level

— Spatial influence through correlogram features:
Savarese, Winn and Criminisi, CVPR 2006

kernel P4
7 kernel Py

(' kernel P,

(a) Circular kernels




What about spatial info?

* Discriminative methods
— Lazebnik, Schmid & Ponce, 2006




Invariance issues

« Scale and rotation
— Implicit
— Detectors and descriptors




Invariance issues

 Scale and rotation

* Occlusion
— Implicit in the models
— Codeword distribution: small variations

— (In theory) Theme (z) distribution: different
occlusion patterns




Invariance issues

 Scale and rotation
 Occlusion

* Translation
— Encode (relative) location information

2006
* Niebles & Fei-Fei, 2007




Invariance issues

* Scale and rotation

* Occlusion

* Translation

* View point (in theory)

— Codewords: detector
and descriptor

— Theme distributions:
different view points
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Fergus, Fei-Fei, Perona & Zisserman, 2005 |
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Weakness of the model

* No rigorous geometric
information of the object
components

* |t's intuitive to most of us that
objects are made of parts — no
such information

* Not extensively tested yet for
— View point invariance
— Scale invariance

« Segmentation and localization
unclear
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Learning and

Recognition / ’7

codewords dictionary
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category models > category
(and/or) classifiers decision




Learning and
Recognition

1. Generative method:
- graphical models

Class densdes
- (9 ")

postencr probabities
o o -] (-]
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2. Discriminative method:
- SVM

category models
(and/or) classifiers




Discriminative methods based on
‘bag of words’ representation

Decision Zebra
boundary /\/

Non-zebra




Discriminative methods based on
‘bag of words’ representation

« Grauman & Darrell, 2005, 2006:
— SVM w/ Pyramid Match kernels

* Others
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optimal partial
matching between
sets of features




!—Iustogram T (H(X), H(Y)) — Z min (H(X)j, H(Y)7)

intersection

X o0 eieo 0! eoie e e
f

Mys mmaa

| IIIIIII i I III
H(X) H(Y)

T (H(X),H(Y)) =4

Slide credit: Kristen Grauman




Pyramid Match

Histogram
intersection T(H(X), H(Y))

Grauman & Darrell 2005)

r

= Z min (H(X);, H(Y);)

J=1

matches at this level

N

—

N;

7 (H;(X), Hi(Y)S — I (H;i-1(X),H;i-1(Y))

matches at previous level

N
—_ e~

i

Difference in histogra

levels counts number of new pairs matched

m intersections across




Pyramid match kernel

histogram pyramids

3 Qi( (X), H;(Y))~T(H;_1(X). Hi_l(Y)))

1=0 S —— —

T number of newly matched pairs at level j

measure of difficulty of
a match at level i

» Weights inversely proportional to bin size

» Normalize kernel values to avoid favoring large sets




Example pyramid match
Level O

)

2




Example pyramid match

Level 1

X | l»% L Ny =4-2=2
g 1
Y - 1=

H(Y) 7, =4

Slide credit: Kristen Grauman




Example pyramid match

Level 2




Example pyramid match

L
pyramid match Kp = Z w: N
- 1 1
1=0

/1 /\ "
J 1 1 J \
/1 )

=1(2) + 5(2) + 3(1) = 3.25

optimal match K = max Z S(Xi,ﬂ'(xi))
T L A TREY 2

71 | /| XTIEX

/1 LI W |

=1(2)+ 5(3) = 3.5

Slide credit: Kristen Grauman




Summary: Pyramid match kernel

nely

z\/\
.. ..\1/

optimal partial
matching between
sets of features

L Ka (¥(X),¥(Y)) =
> 5 (T (H(X), Hi(Y)) ~Z(H,-1(X), Hi-1(Y)))

2:0 \ ;o S—
difficulty of a match at level i

—
number of new matches at level i

Slide credit: Kristen Grauman




Object recognition results
« ETH-80 database

SETES
8 object classes ) m
(Eichhorn and Chapelle 2004) : S
- Features: .
— Harris detector P
— PCA-SIFT descriptor, d=10 nn.

Kernel Complexity Recognition rate
Match [Wallraven etal.] | () (dm2 ) 84%
Bhattacharyya affinity 3 85%
[Kondor & Jebara] | O (dm?) °
Pyramid match @) (dm L) 84%




Object recognition results

Caltech objects database
101 object classes

Features:
— SIFT detector
— PCA-SIFT descriptor, d=10

30 training images / class
43% recognition rate
(1% chance performance)

0.002 seconds per match E

Slide credit: Kristen Grauman




| 5 min break!




Object Recognition --the
importance of multiple cues













Which features should | use?

® One should try to chose the features depending on the
problem at hand

® When dealing with a multi-class categorization
problem, not obvious what to chose --combine many!




feature_1 | ——> CLASSIFIER —> output
feature_2 | ——» CLASSIFIER —» output

INTEGRATION

‘ % oﬁ?:lllt

feature_1 CLASSIFIER

feature_2

- AN

+INTEGRATION ; final

output

feature_2

feature_1
> INTEGRATION — CLASSIFIER —

final
output




B.W. Mel. SEEMORE: combining color, shape and texture
histogramming in a neurally inspired approach to visual object
recognition. Neural Computation, 9, 777-804 (1997)

e Contribution I:first example of multi cue object
recognition system

e Contribution ll: biologically motivated low-level
integration scheme




® |00 objects

® training: |2 to 36
views at different
viewpoints and scales




® test to various forms of degradations:
scrambling, occlusion, coloring




features

To Classifier

channel i — — ——— F, = 2 £
X’YIelﬁe)v e

Classifier
p localf
eatures for )
channel { fi(x v, 6,8, ..) |
] ° Iy o F o Yo o
\\II :// >~ N a\( >'G L}>V .. . p
WM 7,
“~ / \

/ Camera Image \

/ Camera Image




Colors  Angles Blobs Contours
e ML e . |
g M 4 O " i
0@ M o O . - \‘ ‘\ | /
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Gabor-Based Features

|

/R

>

- sin2 +cos2

~ o2

- energy @ scale i

. energy variance

@ scale 1

0

0 45

90

<30

=30

five different groups of
features, combined
together in a single

feature representation




Color Only

Shape Only

Color
and
Shape

results

Intact Nonrigid Scrambled Occluded Cluttered Colorized Noisy

Shape only 9.7 76.7 62.2 38.2 573 435 358
Color only 87.3 944 86.5 722 61.2 6.8 472
Color and shape  96.7 97.8 93.7 79.0 79.0 19.8 58.3




M. E. Nilsback, B. Caputo.Cue Integration through discriminative
accumulation. Proc CVPR 2004.

o Contribution I: cast the cue integration problem
within a discriminative framework

e Contribution Il: one of the first examples of

high-level integration applied to the object
recognition problem

e Contribution Ill: one of the first examples of
high-level integration using SVM




SEF Object Categorization @i

Three possible scenarions:

1. Learning and Recognition in Controlled Settings

B. Caputo, Categorization using a Discriminative Approach




£ o

O Object Categorization & &

Three possible scenarions:

1. Learning and Recognition in Controlled Settings

2. Learning in Controlled Settings, Recognition Uncons-
trained

B. Caputo, Categorization using a Discriminative Approach




GE=F Object Categorization GE=F

Three possible scenarions:

1. Learning and Recognition in Controlled Settings
2. Learning in Controlled Settings, Recognition Unconstrained

3. Learning and Recognition Unconstrained

B. Caputo, Categorization using a Discriminative Approach




GE=F Object Categorization GE=F

Cue Integration via Accumulation

Q Step 1: Single-cue SVMs From the original training set {I’}z 11
for each object j, with j = ., M define P new training sets
{T,(I7) z\ wi=1...,Mp = ., P, each relative to a single
cue. For each new trammg set we traln an SVM. Then, given a test
image I, for each single-cue SVM we compute the margin:

Z > i Kp(Tp(I1), Tp(I)) + b2

The index p on (m%, of, K, (-, ), b?) indicates that in general these
quantities have dlﬁerent values for different cues.

B. Caputo, Categorization using a Discriminative Approach




@ Obiject Categorization

Cue Integration via Accumulation

A Step 2: Discriminative Accumulation After we collect all the margins
{D;(p)},-1, for all the j objects j = 1,..., M and the p cues p =
., P, we classify the image I using their linear combination:

5* —a,rgmax ZapD(p ,ap, € R

{a,}]_, are evaluated via model selection during the training step.

This means that the relevance of each cue, for a specific task, is eva-
luated during the training step from the training data

B. Caputo, Categorization using a Discriminative Approach




Object Categorization

Results on Caltech Database

Voting(MFH-CH-jet) DAS(MFH-CH-jet)
| 306 % 2,090
MFH | 2, =090
MFH |
MFH
car | face || aiplane | motorbike] | car | face | airplane || motorbike|

0%

2.76% 3.25% 6.25% 0% 0%

1.75% 0.75%

B. Caputo, Categorization using a Discriminative Approach




Object Categorization

Results on Caltech Database

Voting(MFH-CH-jet) DAS-DT(MFH-CH-jet)
l 306% J I 0.50 %
MFH I a.=1.00 [
MFH | a =100 | a,=070 |

MFH a,=105 | a,=080

a,=110
car | face | airplane | motorbike] | face car | airplane | motorbike

0% 276%  325%  6.25% 0% 0% 075%  1.28%

B. Caputo, Categorization using a Discriminative Approach




P. Gehler; S. Nowozin. On feature combination for multiclass object
classification. Proc ICCV 2009.

e Contribution I: cast the cue integration problem
within the Multi Kernel Learning (MKL) framework

e Contribution Il: thorough evaluation of MKL
algorithms, definition of competitive baselines

e Contribution Illl: boosting-based high-level cue
integration scheme




Formal definition:

Definition 1 (Feature Combination Problem) Given a
training set {(x;,y;) }i=1.... N of N instances consisting
of an image x; € X and a class label y; € {1,...,C},
and given a set of F image features f,, : X — R%m,
m = 1,...,F where d,, denotes the dimensionality of
the m’th feature, the problem of learning a classification
functiony : X — {1,...,C} from the features and training
set is called feature combination problem.




Kernel function between image features:

km(z, ") = k(fm(x), fm(z"))

Kernel response of the m-th feature:

Kn(x) = lkm(z,21), b (z,22), ..., kn(z, :):N)]T

Kernel selection = feature selection




Baseline Method |: Averaging Kernels

k*(x,z') =

.

F

2.

Baseline Method I1: Product Kernels

F
m=1

km(x,x")




Multiple Kernel Learning: joint optimization over a linear
combination of kernels and SVM parameters

k*(z,z') = Zf;zl Bmkm(x,x')

. |
The final decision function of MKL is

F
Fyvx (x) = sign Z B (K ()T + b)

m=1




Boosting approaches: LPBoost

If one considers fm(x) = Kp(2)Ta+b

Then MKL can be seen as

F
F — sion first train the individual SVMs,
(2) ‘5 Zl B fm (2) then do boosting to find the betas!
m=

Iwo possible variations:
a single beta for all classes, or each class a specific beta




Summary of algorithms

Name Test-time function Coefficients Training Parameters References
T CXN .
. _ 1 F aeR (a,b)., ind. C.
Averaging y(z) = figlma)é[([' 2 m=1 Km(-’”)) e + be] b e RC
1/F\T a € ROV (a,b)., ind. C.
Product y(z) = aEglma;é[((]‘[f‘;=1 Km(w)) ) ac + be] b e RC
. BER™ (ae,be, B9 Ce [20, 18, 1]
MKL y(@) = argmax 37, _, B, (Km(2)" 0 +be) a €RN  ind.
c=1,..., b c ]RC
= CXFXN :
CG-Boost () = argmax 3], Kin(2)  cte,m + bel a€R (@,b)c,ind.  Ce 2]
c=1,...,C beR
B eRF 1. (a,b)e,ind 1. Cy, (4]
F
LP-3 y(z) = argmax 35, B (Km (@) @em +be,m) o e ROXFXN 2. B jointly 2. v € (0,1)
c=1,...,C CxF
beR
o . B e RF*€ L. (a,b)¢,ind 1. Cp, [4]
LP-B y(z) = argmax 37, By (Km(2)" cem +bem) o e REXFXN 2 Bljointly 2. v € (0,1)

c¢=1,...,C

beR°*F




Results: Oxford _FIowAeAr; Database

Single features

Combination methods

siftbdy | 59.4 £3.3

Method | Accuracy | Time || Method Accuracy | Time
Colour | 60.9 £+ 2.1 3 || product 855+t 1.2 2
Shape | 70.2 £1.3 4 || averaging 849 +1.9 10
Texture | 63.7 £ 2.7 3 || CG-Boost 84.8 £2.2 | 1225
HOG 585 %45 4 || MKL (SILP) 852+ 1.5 97
HSV 61.3 = 0.7 3 || MKL (Simple) | 85.2 £ 1.5 152
siftint 70.6 = 1.6 4 || LP-8 85.5+3.0 80

5 | LP-B 854 +24 98




Results: Oxford _}-'Iowers Database

Performance with added noise features

i %

)
870 SN
S _
§ 65/ ——product
60| average \
——CG-Boost
95| —MKL (silp or simple)
50|~ LP-B ..
---LP-B »
4501 5 10 25 50

no. noise features added




Results: Caltech 101 Database
SIFT - grey — K=300 (4 kernels)
65
60
> 55 I
O
L
5 50 - = -best feature
8 ——product
T 45 average
CG-boost
——MKL (silp or simple)
B e e
5 10 15 20 25 30
#training examples




Results: Caltech 101 Database

PHOG: Angle-360,40 bins (4 kernels)

60
55
>50
o
- - = -best feature
8 45 ——product
© average
40 CG-boost
——MKL (silp or simple)
f —LP-
35 ; -«-LP-B

5 10 15 20 25 30
#training examples
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Results: Caltech 101 Database

Caltech-101 (39 kernels)

- = -best feature

——product
average

——MKL (silp or simple)

——LP-B

-=-LP-B

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

5 o 15 20 25 30
#training examples




Results: Caltech 101 Database
Caltech101 comparison to literature
80«
70
60
)
@ 90
8 —o—Zhang, Berg, Maire and Malik (CVPRO06)
o 40 —e— Lazebnik, Schmid and Ponce (CVPR06)
© Wang, Zhang and Fei—Fei (CVPRO6)
30 Grauman and Darrell (ICCV05)
Mutch and Lowe (CVPRO6)
20 —e— Pinto, Cox and DiCarlo (PLOSO08)
—&— @Griffin, Holub and Perona (TRO6)
10 — LP-B (this paper) ‘
5 10 15 20 25 30
#training examples




Q
=

H
o

accuracy

Results: Caltech 101 Database

Caltech-256 (39 kernels)

| - & - best feature
—e— product
average

—e— MKL

—o—LP-B

-e-LP-B

—&— Griffin, Holub and Perona (TR06)
@ Pinto, Cox and DiCarlo (PLOS08)

10 20 30 40 50
#training examples




Wrapping up

® Always Always Always use multiple cues!

® No-brainer cue integration method: kernel averaging

® More sophisticated things: high-level schemes most

probably give better results, but the computational cost
considerably higher --is it worth it?




