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Abstract

Object recognition systems aiming to work in real world
settings should use multiple cues in order to achieve robust-
ness. We present a new cue integration scheme which ex-
tends the idea of cue accumulation to discriminative clas-
sifiers. We derive and test the scheme for Support Vector
Machines (SVMs), but we also show that it is easily ex-
tendible to any large margin classifier. Interestingly, in the
case of one-class SVMs, the scheme can be interpreted as a
new class of Mercer kernels for multiple cues. Experimen-
tal comparison with a probabilistic accumulation scheme is
favorable to our method. Comparison with voting scheme
shows that our method may suffer as the number of object
classes increases. Based on these results, we propose a
recognition algorithm consisting of a decision tree where
decisions at each node are taken using our accumulation
scheme. Results obtained using this new algorithm compare
very favorably to accumulation (both probabilistic and dis-
criminative) and voting scheme.

1 Introduction

Recognizing objects on the basis of their visual appear-
ance is one of the major goals in computer vision. This
task has shown to be challenging, mainly because of the
large variability in objects’ appearance. Object categories
vary considerably in their visual appearance, both between
and within categories. The appearance of objects can
change dramatically due to (self)occlusion, noise and dif-
ferent lighting conditions. Another well-known challenge
for object recognition algorithms is the environment where
the object is located. Indoor or outdoor scenes, and different
types and degree of clutter, can considerably complicate the
localization and recognition of an object. Most of research
concentrates on building recognition algorithms relying on
a single type of cue (see for instance [28, 16, 20, 25, 11]
and many others). While these systems achieve remark-
able performances for some applications, they are affected
from some of the issues described above. A recognition sys-
tem using a single, specific cue, assumes that this cue can

be always detected and provide information sufficient for
recognition. This assumption may be too strong for many
cues, in many scenarios. For instance, global features like
color or texture histograms tend to suffer from clutter and
light changes. Local features are sensitive to view changes.
Shape descriptors, by their very nature, do not handle oc-
clusions well.

Many experiments on human visual perception (see [5]
and the references therein) show that even humans perform
poorly when artificially forced to use a single cue. This
suggests that object recognition systems may achieve ro-
bustness by cue integration. Recognition with multiple cues
is an important but somehow less researched issue in ob-
ject recognition. Some authors have suggested building
new representations that combine information derived from
different cues. For example, Matas et al [17] proposed a
new representation for objects with multiple colors, related
to both histograms and region adjacency representations.
Slater and Healey instead [24] suggested to use invariants of
local color pixel distributions combined with the associated
geometric information. Even if these type of features can
achieve good performances for specific tasks, this kind of
approach has two main drawbacks. First, combining more
cues in a single feature vector is not likely to solve the ro-
bustness issues listed above. On the contrary, if one of the
cues used gives misleading information, it is quite proba-
ble that the new feature vector will be adversely affected.
Second, we can expect the dimension of such a feature
vector to increase as the number of cues grows. This im-
plies longer learning and recognition times, greater memory
requirements and possibly curse of dimensionality effects.
Another strategy is to use integration schemes [18, 26, 30].
Here, the pattern recognition literature offers a vast choice,
but one of the most popular methods in object recognition
is the voting scheme [15, 6, 12]. There are many possible
variants of the voting scheme, but we can say that voting is,
in general, dealing with a set of equivalent input cues and
producing the output which is approved by most of them.
Intuitively, voting relies on the probability that a majority
of cues vote for a wrong hypothesis is lower than the prob-
ability that a minority of cues vote for the right hypothesis.
This means that, for every decision, cues are divided into
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reliable and unreliable. Then, the contribution of the un-
reliable cues is neglected and the decision is made based
on the reliable cues. Thus, in cases when most of (or all)
cues give wrong information, voting schemes are bound to
misclassify the object.

In this paper we present a new integration scheme for
multiple cues that does not neglect any cue contribution.
We show with extensive experiments that this results in an
algorithm that can perform correctly even when all cues in-
dicate as the best hypothesis wrong answers. We start from
the idea of cue integration via accumulation, introduced by
Poggio et al [22] and Terzopoulos [29], and we extend it to
discriminative classifiers. We focus on Support Vector Ma-
chines (SVMs) and we use the margin as the output of the
classifier. For each cue, an SVM is trained and the corre-
sponding margins are summed together (accumulated). Be-
fore summation, each margin is multiplied by a coefficient
(learned from the training data) that indicates the reliability
of that cue for the task at hand. The decision is made on
the linear combination of all margins. Our scheme is nat-
urally extendible to any margin-based classifier. We also
show that, in the case of one-class SVM, it corresponds to
defining a new class of Mercer kernels for multiple cues.
We call this new cue integration method Discriminative Ac-
cumulation Scheme (DAS). We show that it can be used
straightforwardly for recognition, or combined with a deci-
sion tree, where decisions at each leaf node are made using
DAS.

The rest of the paper is organized as follows: Section
2 first discusses the general idea of accumulation and re-
views the SVM algorithm (Section 2.1). It introduces DAS,
it discusses how it can be extended to any margin-based
classifier and it suggests a Mercer kernel interpretation of
DAS for one-class SVMs (Section 2.2-2.3). Section 2 con-
cludes with benchmark experiments of DAS against a prob-
abilistic accumulation scheme. Section 3 compares DAS
with voting schemes. We present a set of extensive exper-
iments which show the strengths and weaknesses of both
approaches. Motivated by these results, we propose a recog-
nition algorithm consisting of a decision tree using DAS at
each split node. Experiments with this new algorithm com-
pare very favorably with probabilistic accumulation, voting
scheme and DAS. The paper finishes with a summary dis-
cussion.

2 Integrating Cues via Accumulation

Many cue integration methods have been presented so far
in the literature. For instance, Clark and Yuille [9] clas-
sify these methods into two main groups, weak coupling
and strong coupling. Assuming that each cue is used as
the input to a different classifier, weak coupling is when the
output of two or more independent classifiers are combined.

On the other hand, strong coupling is when the output of
one classifier is affected by the output of another classifier,
so that their output are no longer independent. In this paper
we focus on a weak coupling method called accumulation.
The main idea of this method is that information from dif-
ferent cues can be summed together, thus accumulated. The
idea was proposed first by Poggio et al [22] and Terzopoulos
[29]; they accumulate cues by summing probabilities or by
joint regularization. Probabilistic accumulation was further
studied by Aloimonos and Shulman [2]. Here we extend the
idea of accumulation to discriminative classifiers. Although
we develop and test the scheme for SVMs, it is extendible
to any margin-based classifier (such as Adaboost [13]). The
rest of this Section presents our new method and reports
benchmark experiments with a probabilistic accumulation
scheme.

2.1 A Review on Support Vector Classifiers

Support Vector Machines (SVMs, [10, 31]) belong
to the class of large margin classifiers. Consider
the problem of separating the set of training data
(x1, y1), (x2, y2), . . . , (xm, ym), where xi ∈ �N is a fea-
ture vector and yi ∈ {−1,+1} its class label. If we as-
sume that the two classes can be separated by a hyperplane
w · x + b = 0, and that we have no prior knowledge about
the data distribution, then the optimal hyperplane is the one
which has maximum distance to the closest points in the
training set. The optimal values for w and b can be found by
solving the following constrained minimization problem:

minimize
w,b

1
2
‖w‖2, subject to yi(w · xi + b) ≥ 1,

∀i = 1, . . . , m. Solving it using Lagrange multipliers
αi(i = 1, . . . , m) results in a classification function f(x) =
sgn (

∑
αiyiw · x + b), where αi and b are found by us-

ing an SVC learning algorithm [10, 31]. Most of the αis
take the value of zero; those xi with nonzero αi are the
“support vectors” (for the extension to the non linearly sep-
arable case, we refer the reader to [10, 31] and the refer-
ences therein). To obtain a nonlinear classifier, one maps
the data from the input space �N to a high dimensional fea-
ture space H by x → Φ(x) ∈ H, such that the mapped data
points of the two classes are linearly separable in the fea-
ture space. Assuming there exists a kernel function K such
that K(x,y) = Φ(x) · Φ(y), then a nonlinear SVM can
be constructed by replacing the inner product x · y in the
linear SVM by the kernel function K(x,y), obtaining then
f(x) = sgn (

∑m
i=1 αiyiK(xi,x)+b). This corresponds to

constructing an optimal separating hyperplane in the feature
space.

The extension of SVM to multi class problems can be
done using the so called one-vs-other strategy. If M is the
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number of classes, M SVM’s are trained, each separating
a single class from all remaining classes. The quantity of
interest in this case is

Dj =
mj∑
i=1

aijyijK(xij ,x) + bj

which is the margin. The final output of the classifier is

j∗ =
M

argmax
j=1

{Dj},

the SVM with the highest output value.
SVMs can also be extended to one-class problems. The

main idea is to find the sphere in feature space of minimum
radius which contains most of the data of the training set.
The possible presence of outliers is countered by using slack
variables ξi which allow for data points outside the sphere.
In this case the decision function is given by

f(x) = sgn

∑
i

αiK(x,xi) −
∑
ij

αiαjK(xi,xj)

 .

2.2 Discriminative Accumulation

Suppose we are given M object classes and, for each class,
a set of Nj training images {Ij

i}Nj

i=1, j = 1, . . . M . Suppose
also that, from each image, we extract a set of P different
cues:

Tp = Tp(I
j
i ), p = 1 . . . P.

The goal is to perform object recognition using all the cues.
Our idea is to use an accumulation scheme based on the
output of effective discriminative classifiers like SVMs. A
key feature of cue integration via accumulation is that, even
when most of the cues provide a wrong answer, the final
classifier still has a chance to perform correctly, due to the
accumulation effect (for an example we refer the reader to
[7], and to results reported in Section 2.4). We expect, that
combining the accumulation idea with the power of SVMs
as single-cue classifiers, will make accumulation even more
effective. Our new Discriminative Accumulation Scheme
(DAS) can be described in two steps:
Step 1: Single-cue SVMs From the original training set
{Ij

i}Nj

i=1, for each object j, with j = 1, . . . , M define

P new training sets {Tp(I
j
i )}Nj

i=1, j = 1, . . . , M, p =
1 . . . , P , each relative to a single cue. For each new training
set we train an SVM. In general, kernel functions may differ
from cue to cue. Model parameters can be estimated during
the training step via cross validation. Then, given a test im-
age Î and assuming M ≥ 2, for each single-cue SVM we
compute the margin:

Dj(p) =
mp

j∑
i=1

αp
ijyijKp(Tp(I

j
i ), Tp(Î)) + bp

j .

The index p on (mp
j , α

p
ij , Kp(·, ·), bp

j ) indicates that in gen-
eral these quantities have different values for different cues.
Step 2: Discriminative Accumulation After we collect all
the margins {Dj(p)}P

p=1, for all the j objects j = 1, . . . , M
and the p cues p = 1, . . . , P , we classify the image Î using
their linear combination:

j∗ =
M

argmax
j=1

{
P∑

p=1

apDj(p)

}
, ap ∈ �+. (1)

{ap}P
p=1 are also evaluated via cross validation during the

training step. This means that the relevance of each cue, for
a specific task, is evaluated during the training step from the
training data (see Sections 2.4 and 3 for examples). Eq. (1)
is clearly an accumulation scheme because all contributions
from all cues are summed together. At the same time, it is
discriminative, in the sense that the contribution of each cue
is obtained via SVMs. To the best of our knowledge, this is
the first cue integration scheme that combines SVMs with
the idea of accumulation.

The algorithm can be used also for M = 1 (object detec-
tion). The scheme is the same except that, in this case, the
margin D(p) is given by

D(p) =
mp∑
i=1

αp
i Kp(Tp(Ii), Tp(Î)) −

mp∑
i,k=1

αp
i α

p
kKp(Tp(Ii), Tp(Ik)).

Note that in this case D(p) is a linear combination of kernel
functions. Thus Eq (1) can be interpreted as a one-class
SVM using as kernel the function:

KMC({Tp(Ii)}p, {Tp(I)}p) =
P∑

p=1

apKp(Tp(Ii), Tp(I)).

KMC({Tp(Ii)}p, {Tp(I)}p) is a multi-cue Mercer kernel,
as it consists of a linear combination with positive coeffi-
cients of Mercer kernels [10].

2.3 Generalization to Margin-based Classi-
fiers

The discriminative accumulation scheme described in Sec-
tion 2.2 is based on the margins {Dj(p)}, which are the out-
puts of each single-cue SVM. It follows that the scheme can
be used for any margin-based classifier. These are a class
of learning algorithms which take as input binary labeled
training examples (x1, y1), . . . (xm, ym) with xi ∈ χ and
yi ∈ {+1,−1} (for the extension to multi classes we refer
the reader to [1] and the references therein). Data are used
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CH MFH CH-MFH

SVM 16.18% 5.33%
SG-MRF 20.10% 6.28%

DAS 1.82%
USG-MRF 3.55%

Table 1: Results for SVM, SG-MRF, DAS and USG-MRF on the COIL
database. Results for SG-MRF and USG-MRF are reported from [7].

to generate a real-valued function or hypothesis f : χ → �,
with f belonging to some hypothesis space F . The margin
of an example x with respect to f is f(x). f(x) is deter-
mined by minimizing:

1
m

m∑
i=1

L(yif(xi)), (2)

for some loss function L : � → [0,∞[. The general-
ization of the discriminative accumulation scheme to any
margin-based algorithm is straightforward: given a margin-
-based classifier, we will train P single-cue algorithms
and compute for each of them the corresponding quantity
fj(Tp(x)), p = 1, . . . P , relative to the object j,∀j =
1, . . . M (step 1). The multi-cue classifier will become (step
2)

j∗ = argmax
j

{
P∑

p=1

apfj(Tp(x))

}
, ap ∈ �+.

Different choices of the loss function L and different algo-
rithms for minimizing Eq (2) over some hypothesis space
lead to various well-studied learning algorithms, such as
SVMs, Adaboost ([13], which has proved to be very ef-
fective for object recognition [32]), regression and decision
trees.

2.4 Results

In order to assess the effectiveness of DAS for object recog-
nition, we ran a first set of benchmark experiments against
a probabilistic accumulation scheme. It was recently pro-
posed in [7] an integration scheme based on accumula-
tion of kernel Gibbs distributions called Spin Glass-Markov
Random Fields (SG-MRF). The authors derived the algo-
rithm from results of statistical physics (hence the name of
the model), but the final classifier can also be interpreted as
a probabilistic accumulation scheme for multiple cues. This
is (to our knowledge) the most recent example of proba-
bilistic accumulation for object recognition, and also a ker-
nel method. Thus, we decided to test our scheme against
SG-MRFs on two different databases. We report results ob-
tained by using single-cue SVMs and DAS; we decided not

DAS 1st match 1st match 1st match
SVM(CH) 1st match 52nd match 59th match

SVM(MFH) 35th match 1st match 2nd match

Table 2: COIL database experiments: examples of images misclassified

by one or both cues, and classified correctly by DAS.

to run experiments on concatenated feature vectors, as done
in [7], for two reasons: (1) results reported there suggest
that it is not an effective strategy compared to accumula-
tion. (2) The intrinsic weaknesses of multi-cue features for
object recognition, that we discussed in Section 1.
COIL Database Experiments We repeated the experiment
described in [7], which now we briefly summarize. We used
the COIL database [19] with training set of 12 views per
object (one every 30◦); training and test set were disjoint.
As features, we used Color Histograms (CH [27], rg with
resolution of bin axis equal to 8) and Multidimensional re-
ceptive Field Histograms (MFH [25], Gaussian derivative
filters along x and y directions, σ = 1.0 and resolution of
bin axis equal to 8). Both histograms were normalized to 1.
We ran experiments with SVM on each cue separately, and
with DAS on both cues. The kernel used was [31]

K(x,y) = exp

{
−γ

∑
i

||xa
i − ya

i ||b
}

, a ∈ �+, b ∈]0, 2].

Here, and for all the experiments reported in this paper, we
used a modified version of LIBSVM [8], with C = 100. Ex-
periments were run on a SUN Ultra-Enterprise with mem-
ory size of 4096 Megabytes, 8 Processors UltraSPARC-II
400Mhz. Results (error rates) are reported in Table 1. We
see that, in all cases, our algorithm performs better than SG-
-MRF 1. Learning time (= finding the support vectors plus
model selection) went from a minimum of 11886 s for MFH
to a maximum of 30047 s for DAS (the code is far from be-
ing optimized; also, cross validation for the kernel parame-
ters (a, b, γ) has been quite time consuming). Recognition
time per view went from a minimum of 28.3 ms using SVM
and CH, to a maximum of 57.5 ms using DAS. The param-
eters {ap}2

p=1, found via cross validation, were 0.7 for CH
and 1 for MFH.

Table 2 shows in details some examples of classification
results. The left and middle columns show examples of ob-
ject views misclassified by one of the two cues, but classi-
fied correctly by DAS. The right column shows an example

1Results reported in [7] relative to SVMs were obtained using a Gaus-
sian kernel.
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Figure 1: Examples of images from the Caltech database.

CH MFH CH-MFH

SVM 6.63% 3.11%
SG-MRF 11.93% 8.12%

DAS 1.55%
USG-MRF 3.39%

Table 3: Results for SVM, SG-MRF, DAS and USG-MRF on the Caltech

database; we report the error rates.

of object view misclassified by both cues, but classified cor-
rectly by DAS. This type of behavior is a major point in fa-
vor of accumulation: in such a case, a voting scheme would
give a wrong answer. USG-MRF displays a similar behav-
ior [7], but the error rates reported in Table 1 show clearly
that DAS is more effective than USG-MRF in this case.
Caltech Database Experiments We ran a second set of ex-
periments on images of cars (rear), airplanes, motorbikes
and faces, taken in real world scenes and at different scales
(Caltech database, [11]). Training and test set consists of
400 images each for cars, airplanes and motorbikes, 218
for training and 217 for test for faces. The experimental
setup was analogous to the one described for the COIL ex-
periment. The only differences were the choice for the fea-
ture parameters (rg and resolution of bin axis equal to 16
for CH; Laplacian derivative filters at two different scales
(σ1 = 1.0, σ2 = 2.0) and resolution of bin axis equal to
16 for MFH), and the kernel used for SVM, which in these
experiments was [4]

K(x,y) = exp
{−γχ2(x,y)

}
. (3)

Results are reported in Table 3. Once again, we see that
DAS performs better than SG-MRF. It is interesting to note
the good performance achieved by both methods even using
a single cue. The worst results (11.93% error rate, obtained
by SG-MRF using the CH representation) is quite remark-
able, considering that it is obtained with a global type of
feature, on object images taken in cluttered backgrounds.
Learning time for DAS went from a minimum of 452 s to
a maximum of 1392 s (note the difference with the previ-
ous experiment; in this case, the only kernel parameter to
be selected was γ). Recognition time per view went from
a minimum of 6 ms using SVM and CH to a maximum of
18 ms using DAS. The parameters {a}2

p=1, found via cross
validation, were 1.1 for CH and 1 for MFH.
Discussion Both experiments show a clear improvement in

results by using the discriminative approach. Of course, it
could be argued that SG-MRFs’ performance is poorer be-
cause of the way the pdfs are estimated. It is possible that,
by evaluating the pdfs differently, results for the probabilis-
tic accumulation scheme would improve, and maybe sur-
pass those presented for DAS. The truth is that both accu-
mulation schemes (probabilistic and discriminative) have a
heuristic element. For the probabilistic approach, it is how
to estimate the pdfs; for the discriminative approach, it is
how to choose the kernel function. In both cases, a bad
choice can affect the final performance. Still, SVMs are
gaining popularity for visual pattern recognition, and this
has two consequences: first, there is an increasing litera-
ture reporting results on several applications, using different
types of cues and different kernels ([23, 33, 14] and many
others). This is building a shared knowledge regarding
which kernel should be used for a given feature type. Sec-
ond, as more new kernel functions are derived for specific
visual recognition problems (see for instance [34, 35, 3]), it
is possible to use more cue types for DAS. Thus, choosing
a good kernel in designing an SVM-based algorithm is be-
coming less and less heuristic. This, united with the exper-
imental results we have shown, makes us conclude in favor
of DAS with respect to probabilistic accumulation schemes.

3 Discriminative Accumulation and
Voting Scheme

Voting schemes are one of the most popular approaches for
cue integration in object recognition [15, 6, 12]. The idea of
integrating cues by voting can be implemented with many
possible variations [21]. In this paper, we compare DAS
with the voting scheme used in [15], which to our knowl-
edge is the most recent example of object recognition with
multiple cues integrated by a voting algorithm. Although
there are, of course, many other possible different imple-
mentations for a voting algorithm, these experiments still
give some indications of the strengths and weaknesses of
these two approaches.
CogVis-ETH Database Experiments We ran a first exper-
iment on the CogVis-ETH database [15], which contains
80 objects from 8 different categories (apple, tomato, pear,
toy-cow, toy-horse, toy-dog, toy-car and cup). We designed
the experiment to make our results comparable to those re-
ported in [15]. We used two cues: (1) MFH with Gaus-
sian derivative filters along x and y directions, three scales
(σ1,2,3 = 1.0, 2.0, 4.0) and resolution of bin axis equal to
16; (2) CH with RGB, resolution of bin axis equal to 16. For
each category, the training set consisted of 9 objects and test
set of 1 object. We generated 10 different partitions of train-
ing and test set, and we ran accordingly 10 experiments (we
present the averaged results). We used the kernel described
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CH MFH CH-MFH

Leibe-Schiele [15] 35.15% 20.21% 13.6%
SVM 19.97% 6.07%
DAS 4.0%

SVM-Voting 3.6%

Table 4: Error rates for the CogVis-ETH database. Results in the first

row are reported from [15], where the result in the last column is obtained

with the voting scheme. The result in the third row is obtained by using a

voting algorithm with single-cue SVMs as inputs.

in Eq (3). We compared results obtained using DAS with
those reported in [15] 2, and with results obtained by us-
ing the voting scheme on the outputs of the one-cue SVMs.
Results are reported in Table 4.

Two considerations must be made: first, SVMs with sin-
gle cue give much better results than using χ2 [15]. As a
consequence, both cue integration schemes using as input
SVMs perform quite better than the voting scheme on χ2.
Second, the voting scheme using single-cue SVMs as input
performs slightly better than DAS (a 0.4% difference in er-
ror rate).
Caltech Database Experiments We ran a second exper-
iment on the Caltech database. This time we used three
different cues: MFH and CH with the feature parame-
ters described for this database in Section 2.4, and jet fea-
tures [28] consisting of 78 feature points, computed over
7 different scales, each resulting in a 9-dimensional vector.
The kernel used for jet features was [34] KL(Lh,Lk) =
1/2[K̂(Lh,Lk) + K̂(Lk,Lh)], with

K̂(Lh,Lk) =
1
nh

nh∑
jh=1

max
jk=1,...,nk

{Kl(ljh
(Lh), ljk

(Lk))

were Li = {lj(Ii)}ni
j=1 is a jet feature vector for an image

Ii and Kl is

Kl(xjh
,yjk

) =
〈xjh

− µx|yjh
− µy〉

||xjh
− µx|| · ||yjh

− µy ||
Results obtained using DAS and the voting scheme on
single-cue SVMs, for the three cues and for the (MFH-jet)
and (MFH-CH) combinations are reported in Table 5, top
and middle row (results for the (CH-jet) combination are
analogous to those obtained with (MFH-jet), thus we skip
them).

Here we observe a different behavior: for all cue combi-
nations, DAS gives the better performance. We explain the
results of these two experiments as follows: DAS is an ac-
cumulation scheme, hence uses all cues, for every decision.

2Although in [15] the authors defined training and test set differently,
the statistical significance should be preserved.

Each cue is weighted by a coefficient ap, which indicates
somehow the degree of reliability of that cue. These co-
efficients are determined during the learning step, via cross
validation, optimizing the overall performance. Thus, when
the number of object classes grows, each cue will have to
compromise more: the recognition rate of some objects
might decrease slightly, to avoid that the recognition rate
of all the remaining objects does not decrease too much.
A DAS-based Decision Tree The voting algorithm used is
not affected by the increasing number of objects, because
it is based on a decision tree which splits the object classes
in two subgroups at each step, optimizing their recognition
rate. How to perform the splitting is decided automatically
by the algorithm itself (for more details, we refer the reader
to [15]) . This consideration brings us to suggest a new inte-
gration scheme combining the best of both worlds, namely
a decision tree where decisions are taken using DAS at each
node leaf. In this way, DAS parameters {ap} would always
be selected for a two-class problem. If our hypothesis on
the behavior of DAS is correct, this should allow DAS to
exploit fully its potential. We tested our idea by running the
two experiments described in this Section, using the DAS-
-Decision Tree (DAS-DT). For the CogVis-ETH database
we obtained an error rate of 2.89%, which is a 0.71% bet-
ter than the voting scheme using single-cue SVMs, and a
1.11% better than using DAS (see Table 4 for the results on
the CogVis-ETH database without using DAS-DT).

Results for the Caltech experiments are reported in Ta-
ble 5, bottom row. We see that the behavior is similar to
what observed for the CogVis-ETH experiments: DAS-DT
obtains a better performance than DAS and voting scheme,
for all possible different combinations of the three cues.
A careful analysis of the results confirms our hypothesis
on the performance of DAS for many object classes. For
instance, consider in detail results obtained for DAS and
DAS-DT, using MFH and jet features (Table 5, left column,
middle and bottom row). We see that the error rate found
by DAS for motorbikes is lower than the error rate found
by DAS-DT for the same object class. Still, error rates for
the other three objects decrease (except for cars, for which
both methods obtain a 0% error rate), and this brings to an
overall better performance for DAS-DT. It is interesting to
note how, for a given experiment, the weighting coefficients
{ap} change, for each cue, by using DAS or DAS-DT. For
example, in the case of the MFH-CH experiment (Table 5,
middle column, middle and bottom row), we see that DAS
finds a 1.0 coefficient for MFH, and a 1.1 for CH. In the case
of DAS-DT, the coefficient for MFH remains constant and
equal to 1 for all splitting, while the coefficient for CH is
found to be 1 for the first splitting, 2 for the second splitting
and 3.5 for the third. Thus, using a tree structure allows the
DAS decision rule to adapt the weighting of each feature
at each split, which leads to a better overall performance.
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Voting(MFH-jet) Voting(MFH-CH) Voting(MFH-CH-jet)
Total Error Rate:

motorbike

0% 2.76% 3.25% 6.25%

car face airplane

MFH

MFH

MFH
3.06 %

Total Error Rate:

motorbike

2.76% 3.25% 6.25%

car face airplane

MFH

MFH

MFH

0%

3.06 %
Total Error Rate:

motorbike

2.76% 3.25% 6.25%

car face airplane

MFH

MFH

MFH

0%

3.06 %

DAS(MFH-jet) DAS(MFH-CH) DAS(MFH-CH-jet)

= 1.00
MFH

a

motorbike

0% 1.25% 2.50%

car face airplane

Total Error Rate:
1.17 %

JET
a = 1.39

0.92%

= 1.00
MFH

a

motorbike

0% 2.00% 3.50%

car face airplane

Total Error Rate:
1.44 %

a
CH

= 1.10

0%

= 1.00
MFH

a

motorbike

1.75% 0.75%

car face airplane

Total Error Rate:
0.62 %

a =0.90
JET

CH
a =0.90

0% 0%

DAS-DT(MFH-jet) DAS-DT(MFH-CH) DAS-DT(MFH-CH-jet)
= 1.00

MFH
a

0.94 %
Total Error Rate:

motorbike

0% 1.00% 2.75%

JET
a = 0.50

JET
a

JET
a = 0.40

= 0.60

0%

car face airplane

= 1.00
MFH

a

0.98 %
Total Error Rate:

motorbike

0% 1.00%

a

CH
a

CH
a

0.92%

car face airplane

CH

= 2.00

= 3.50

= 1.00

2.00%

= 1.00
MFH

a

0.50 %
Total Error Rate:

motorbike

0% 0.75%

CH
a

CH
a

airplane

= 0.70

= 0.80

1.25%

a
JET

= 1.00

a
JET

a
JET

= 1.10

= 1.05

a
CH

= 1.00

0%

face car

Table 5: Caltech database experiments: results for voting scheme (top row), DAS (middle row) and DAS-DT (bottom row). We report results for two-cues

experiments (MFH-jet in the left column, and MFH-CH in the middle column) and the three-cues experiments (right column). Each graph reports the

decision tree obtained, the total error rate and the error rate for category. We report also, for DAS and DAS-DT, the weighting coefficients found for each

cue, at each leaf node. The MFH coefficient was found to be 1 for all these experiments; we report it on the left side of each graph. For the voting scheme,

we give, at each leaf node, the cue chosen for the split.

With respect to the voting algorithm, we observe that, in
general, the splitting between classes will be different using
DAS-DT. This happens, for instance, when we use all the
three cues (Table 5, right column, top and bottom row). We
noticed the same behavior for the CogVis-ETH experiments
(this result is not reported due to space constraints). From
all these experiments, we can conclude that DAS, by itself
or combined with a decision tree, is an effective method for
cue integration and competitive with state of the art algo-
rithms.

4 Conclusions

Robustness is a vital feature of any visual recognition sys-
tem aiming to work in unconstrained, real-world settings.
Cue integration is a fundamental strategy for achieving ro-

bustness. This paper presents a new algorithm for cue in-
tegration that extends the idea of accumulation to discrimi-
native classifiers. The major strength of cue integration via
accumulation is that, even when all cues are indicating as
best hypothesis the wrong answer, the algorithm still has a
chance to perform correctly. We illustrated this behavior by
running experiments on several databases, using different
types of features and comparing our results with a proba-
bilistic accumulation scheme and a voting algorithm. Re-
sults confirm the effectiveness of our approach.

We plan to extend this work as follows: (1) we are cur-
rently extending our algorithm to increase the number and
type of cues available. In some cases, this may mean using
SVMs for the first time on certain type of features, and it
may lead to the need of defining new kernel functions. (2)
We plan to run extensive experiments on other visual pattern
recognition applications, like material classification and ac-
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tion recognition. We also plan to continue experiments on
object recognition and categorization, testing robustness of
our method with respect to scale, light changes and occlu-
sions. (3) The impressive results obtained in [32] using Ad-
aboost suggest that the extension of our algorithm in that di-
rection could bring interesting results; we intend to explore
this possibility. (4) We plan to use multi-class SVMs with
the multi-cue Mercer kernel we derived, and compare re-
sults with those given by DAS. Also, the coefficients {ap}
are obtained so far via cross validation, but a theoretical
analysis of the generalization bound of DAS could lead to a
more theoretically sound learning procedure.
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