
Evaluation of Features Detectors and Descriptors

based on 3D objects

Pierre Moreels and Pietro Perona

California Institute of Technology, Pasadena CA91125, USA

Abstract

We explore the performance of a number of popular feature detectors and descriptors in matching 3D

object features across viewpoints and lighting conditions. To this end we design a method, based on in-

tersecting epipolar constraints, for providing ground truth correspondence automatically. These corre-

spondences are based purely on geometric information, and do not rely on the choice of a specific feature

appearance descriptor. We test detector-descriptor combinations on a database of 100 objects viewed

from 144 calibrated viewpoints under three different lighting conditions. We find that the combination of

Hessian-affine feature finder and SIFT features is most robust to viewpoint change. Harris-affine com-

bined with SIFT and Hessian-affine combined with shape context descriptors were best respectively for

lighting change and change in camera focal length. We also find that no detector-descriptor combination

performs well with viewpoint changes of more than 25-30◦.

1 Introduction

Detecting and matching specific features across different images has been shown to be useful for a di-

verse set of visual tasks including stereoscopic vision [34, 19], vision-based simultaneous localization

and mapping (SLAM) for autonomous vehicles [30, 18], mosaicking images [4] and recognizing ob-

jects [28, 18]. This operation typically involves three distinct steps. First a ‘feature detector’ identifies a

set of image locations presenting rich visual information and whose spatial location is well defined. The
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Figure 1: (Top row) Large (≈ 50◦) viewpoint change for a flat scene. Many interest points can be matched
after the transformation. The appearance change is modeled by an affine transformation. Panel b. shows four
40x40 patches before and after viewpoint change - images courtesy of K.Mikolajczyk (Bottom row) Similar 50◦

viewpoint change for a 3D scene. Many visually salient features are associated with locations where the 3D surface
is irregular or near boundaries. The local geometric structure of the image around these features varies rapidly with
viewing direction changes, which makes matching features more challenging because of occlusion and changes in
appearance. In particular, the appearance of the patches shown in panel e. varies significantly with the change in
viewpoint. This change is difficult to model.

spatial extent or ‘scale’ of the feature may also be identified in this first step, as well as the local shape

near the detected location [20, 19, 34, 35]. The second step is ‘description’: a vector characterizing local

visual appearance is computed from the image near the nominal location of the feature. ‘Matching’ is

the third step: a given feature is associated with one or more features in other images. Important as-

pects of matching are metrics and criteria to decide whether two features should be associated, and data

structures and algorithms for matching efficiently.

The ideal system will be able to detect a large number of meaningful features in the typical image,

and will match them reliably across different views of the same scene / object. Critical issues in de-
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tection, description and matching are robustness with respect to viewpoint and lighting changes, the

number of features detected in a typical image, the frequency of false alarms and mismatches, and the

computational cost of each step. Different applications weigh these requirements differently. For exam-

ple, viewpoint changes more significantly in object recognition, SLAM and wide-baseline stereo than

in image mosaicking, while the frequency of false matches may be more critical in object recognition,

where thousands of potentially matching images are considered, rather than in wide-baseline stereo and

mosaicing where only few images are present.

A number of feature detectors [19, 10, 1, 12, 20, 6], feature descriptors [18, 9, 2, 13] and feature

matchers [28, 18, 5, 25] have been proposed in the literature. They can be variously combined and

concatenated to produce different systems. Which combination should be used in a given application?

A couple of studies explore this question. Schmid [28] characterized and compared the performance of

several features detectors. Recently, Mikolajczik and Schmid [23] focused primarily on the descriptor

stage. For a chosen detector, the performance of a number of descriptors was assessed. These evaluations

of interest point operators and feature descriptors, have relied on the use of images of flat scenes, or in

some cases synthetic images. The reason is that in these special cases the transformation between pairs

of images can be computed easily, which is convenient to establish ground truth.

However, the relative performance of various detectors can change when switching from planar scenes

to 3D images (see Figs., 1, 16 and [8]). Features detected in an image are generated in part by surface

markings, and in part by the geometric shape of the object. The former are often associated with smooth

surfaces, they are usually located far from object boundaries and have been shown to have a high stability

across viewpoints [28, 23]. Their deformation may be modeled by an affine transformation, hence the

development of affine-invariant detectors [17, 20, 27, 34, 35]. The latter are associated with high

surface curvature and are located near edges, corners and folds of the object. Due to self-occlusion and

complexity of local shape, these features have a much lower stability with respect to viewpoint change.

It is difficult to model their deformation without a full 3D model of the shape.

The present study generalizes the analyses in [28, 13, 23] to 3D scenes 1. We evaluate the performance

of feature detectors and descriptors for images of 3D objects viewed under different viewpoint, lighting

and scale conditions. To this effect, we collected a database of 100 objects viewed from 144 different

1An early version of this work was presented in [24]
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calibrated viewpoints under 3 lighting conditions. We also developed a practical and accurate method for

establishing automatically ground truth in images of 3D scenes. Unlike [8] ground truth is established

using geometric constraints only, so that the feature/descriptor evaluation is not biased by the choice of

a specific descriptor and appearance-based matches. Besides, our method is fully automated, so that the

evaluation can be performed on a large-scale database, rather than on a handful of images as in [23, 8].

Another novel aspect is the use of a metric for accepting/rejecting feature matches due to D.Lowe [18];

it is based on the ratio of the distance of a given feature from its best match vs the distance to the second

best match. This metric has been shown to perform better than the traditional distance-to-best-match.

Section 2 presents the previous work on evaluation of features detectors and descriptors. In section 3

we describe the geometrical considerations which allow us to construct automatically a ground truth for

our experiments. Section 4 presents our laboratory setup and the database of images we collected. Sec-

tion 5 describes the decision process used in order to assess performances of detectors and descriptors.

Section 6 presents the experiments. Section 7 contains our conclusions.

2 Previous work

The first extensive study of features stability depending on the feature detector being used, was per-

formed by Schmid & Mohr [29]. The database consisted of images of drawings and paintings pho-

tographed from a number of viewpoints. The authors extracted and matched interest points across pairs

of views. The different views were generated by rotating and moving the camera as well as by vary-

ing the illumination. Since all scenes were planar, the transformation between two images taken from

different viewpoints was a homography. Ground truth, i.e. the homography between pairs of views,

was computed from a grid of artificial points projected onto the paintings. The authors measured the

performance by the repeatability rate, i.e. the percentage of locations selected as features in two images.

Mikolajczyk et al. [21] performed a similar study of affine-invariant features detectors. This time,

most images of the database consisted of natural scenes. However, the scenes were either planar (e.g.

graffiti on a wall), or viewed from a large distance, such that the scene appeared flat. Therefore the

authors could model the ground truth transformation between a pair of views with a homography as

was previously done in [29]. This ground truth homography was computed using manually selected

correspondences, followed by an automatic computation of the residual homography.
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Note that the performance criterion used in both of these studies is well defined only when a small

number of features is detected in each image. If the number of interest points is arbitrary, one could

indeed consider a trivial interest point operator that selects every point in the image to be a new feature.

The performance of this detector would be excellent in terms of stability of the features location. In

particular for planar images such as considered by [21, 29], this detector would reach 100% stability.

This perfect stability still holds if the detector selects a dense grid of points in the image. This argument

illustrates the necessity of including the descriptor stage in performance evaluation.

Fraundorfer & Bischof [8] compared local detectors on real-world scenes. Ground truth was estab-

lished in triplets of views. Correspondences were first identified between grids of points sampled densely

in two close views: matches were obtained by nearest neighbor search in appearance space. The coor-

dinates of pairs of matching points in the first two images, were transferred on the third image via the

trifocal tensor. The test scenes used for detector evaluation were piecewise flat (building, office space).

Mikolajczyk & Schmid [23] provided a complementary study where the focus was not anymore on

the detector stage but on the descriptor, i.e. a vector characterizing the local appearance at each detected

location. Two interest points were considered a good match if their appearance descriptors was closer

than a threshold t in appearance space. Matches that were accepted were compared to ground truth to

determine if they were true matches or false alarms. Ground truth was computed as in their previous

study [21]. By varying the acceptance threshold t, the authors generated recall-precision curves to

compare the descriptors. If the value of t is small, the user is very strict in accepting a match based on

appearance, which leads to a high precision but a poor recall. If t is high, all candidate correspondences

are accepted regardless of their appearance. Correct matches are accepted (high recall), as well as lots

of false positives, leading to lower precision.

Ke & Sukthankar [13] used a similar setup to test their PCA-SIFT descriptor against SIFT. Test fea-

tures were indexed into a database, the resulting matches were accepted based on a threshold t on quality

of the appearance match. Ground truth was provided by labeled images, or by using synthetic data. The

threshold t was varied to obtain recall-precision curves.

A recent study by Mikolajczyk et al. [22] compared detectors and descriptors when they are integrated

in the framework of the full recognition system from [14]. They assessed the performance from the per-

formance of the overall system. The integration within a complete recognition method has the advantage
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of computing directly the bottom line performance in recognition. However, the scores might depend

heavily on the architecture of the recognition system and may not be generalized to other applications

such as large baseline stereo, SLAM and mosaicking.

3 Ground truth

In order to evaluate a particular detector-descriptor combination we need to calculate the probability

that a feature extracted in a given image, can be matched to the corresponding feature in an image of

the same object/scene viewed from a different viewpoint. For this to succeed, the feature’s physical

location must be visible in both images, the feature detector must detect it in both cases with minimal

positional variation, and the descriptor of the features must be sufficiently close. To compute this prob-

ability we must have a ground truth telling us if any tentative match between two features is correct or

not. Conversely, whenever a feature is detected in one image, we must be able to tell whether in the

corresponding location in another image a feature was detected and matched.

We establish ground truth by using epipolar constraints between triplets of calibrated views of the

objects (this is equivalent to using the trifocal tensor [32, 11]). The motivation comes from stereoscopic

imagery: if the position of a point is identified in two calibrated images of a same scene, the position

in 3D space of the physical point may be computed, and its location may be predicted in any additional

calibrated image of the same scene.

We distinguish between a reference view (A in Fig.2 & Fig.3), a test view C, and an auxiliary view

B. Given one reference feature fA in the reference image, any feature in C that matches the reference

feature must satisfy the constraint of belonging to the corresponding reference epipolar line lAC . This

excludes most potential matches but not all of them (in our experiments, typically 5-10 features remain

out of 500-1000 features in image C). We make the test more stringent by imposing a second constraint.

In the auxiliary image B, an epipolar line lAB is associated to the reference feature fA. Again, fA has

typically 5-10 potential matches along lAB , each of which in turn generates an ‘auxiliary’ epipolar line

lBC
1...10 in C. The intersection of the primary (lAC) and auxiliary (lBC

1...10) epipolar lines in C identify a

number of small matching regions, in which only zero or one features are typically detected. As we will

make clear later, when a matching feature is found, this indicates with overwhelming probability that it

is the correct match.
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Figure 2: Diagram explaining the geometry of our three-cameras arrangement and of the triple epipolar con-
straint.

Figure 3: Example of matching process for one feature.
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Figure 4: Photograph of our laboratory setup. Each object was placed on a computer-controlled turntable which
can be rotated with 1/50 degree resolution and 10−5 degree accuracy. Two computer-controlled cameras imaged
the object. The cameras were located 10◦ apart with respect to the object. The resolution of each camera is
3Mpixels. In addition to a neon tube on the ceiling, two photographic spotlights with diffusers are alternatively
used to create 3 lighting conditions.

Note that the geometry of our acquisition system (Fig.2 & Fig.3) does not allow the degenerate case

where the reference point is on the trifocal plane. In this case, both epipolar constraints are superimposed

and their intersection is not defined. In this case, the triangle (reference camera/auxiliary camera/test

camera) would be a degenerate triangle.

The benefit of using the double epipolar constraint in the test image is that any correspondence - or

lack thereof - may be validated with extremely low error margins. The cost is that only a fraction (50-

70%) of the reference features have a correspondence in the auxiliary image, thus limiting the number

of features triplets that can be formed.
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4 Experimental setup

4.1 Photographic setup and database

Our acquisition system consists of 2 cameras taking images of objects on a motorized turntable (see

Fig.4). We used inexpensive off-the-shelf Canon Powershot G1 cameras with a 3 MPixels resolution.

The highest focal length available on the cameras - 14.6mm - was used in order to minimize distortion

(0.5% pincushion distortion with the 14.6mm focal length). A change in viewpoint is performed by the

rotation of the turntable. The lower camera takes the reference view and the top camera the auxiliary

view, then the turntable is rotated and the same camera takes the test view. Each acquisition was repeated

with 3 different lighting conditions obtained with a combination of photographic spotlights and diffusers.

The images were converted to gray-scale using Matlab (keeps luminance, eliminates hue and saturation).

The baseline of our stereo rig, or distance between the reference camera and the auxiliary camera, is a

trade-off parameter between repeatability and accuracy. On one hand, we would like to set these cameras

very close to each other, in order to have a high feature stability (also called repeatability rate) between

the reference view and the auxiliary view. On the other hand, if the baseline is small the epipolar lines

intersect in the test view C with a very shallow angle, which lowers the accuracy in the computation of

the intersection. We chose an angle of 10◦ between reference camera and auxiliary camera; with this

choice, the intersection angle between both epipolar lines varied between 65◦ and 6◦ when the rotation

of the test view varied between 5◦ and 60◦.

The database consisted of 100 different objects. Fig.5-6-7 show some examples from this database.

The objects were chosen to include both heavily textured objects (pineapple, globe) and objects with a

more homogenous surface (bananas, horse). The only constraint on the objects’ identity concerned their

size. They had to be small enough to fit on the turntable (40 cm diameter), but needed to be large enough

so that their image would generate a significant number of features. Aside from these constraints, the

objects were selected randomly. Most objects were 3-dimensional, with folds and self-occlusions, which

are a major cause of features instability in real-world scenes. A few piecewise-flat objects (e.g. box of

cereals, bottle of motor oil) were also present.
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Bannanas Car Car2 Conch Desk Dog

FlowerLamp GrandfatherClock Horse Motorcycle Robot Rock

TeddyBear Tricycle Vase Clock EthernetHub Hicama

Pepper Globe Pineapple Rooster Dremel JackStand

Sander SlinkyMonster SprayCan FireExtinguisher Frame Hat

StaplerRx Carton Clamp EggPlant Lamp Mouse

Oil Basket Clipper CupSticks Filter Mug

Figure 5: Our calibrated database consists of photographs of 100 objects which were imaged in three lighting
conditions: diffuse lighting, light from left and light from right. Two people chose objects from the set they
met in their daily life. The objects had to fit on the turntable and within the camera’s field of view. The range
of shape statistics was explored, ranging from wireframe-type objects (Tricycle) to irregular 3D objects (Car2,
Desk). Textured objects (Pineapple, Globe) were included as well as homogenous ones (Hicama, Pepper). A
few piecewise flat objects were imaged as well (Carton, Oil can). Each object was photographed by two cameras
located above each over, 10◦ apart. 42 objects from the database are displayed.
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Figure 6: Each object was rotated with 5◦ increments and photographed at each orientation with both cameras
and three lighting conditions for a total of 72 × 2 × 3 = 432 photographs per object. Eight such photographs
(taken every 45◦)are shown for one of our objects.

Figure 7: Three lighting conditions were generated by turning on a spotlight (with diffuser) located on the left
hand side of the object, then a spotlight located on the right hand side, then both. This figure shows 8 photographs
for each lighting condition.

4.2 Calibration

The calibration images were acquired using a checkerboard pattern. The corners of the checkerboard

were first identified by the Harris interest point operator, then both cameras were automatically calibrated

using the calibration routines in Intel’s Open CV library, including the estimation of the radial distortion

[3], which was used to map features locations to their exact perspective projection.

The uncertainty on the position of the epipolar lines was estimated by Monte Carlo perturbations of the

calibration patterns. Hartley & Zisserman [11] showed that the envelope of the epipolar lines obtained

when the fundamental matrix varies around its mean value, is a hyperbola. Rather than computing this

curve analytically, we computed it by Monte Carlo simulation. The calibration patterns were perturbed
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by a random amount between 0 and 3 pixels (uniform distribution). This perturbation was performed

by shifting the position of the corners in the checkerboard pattern after detection. This quantity was

chosen so that it would produce a reprojection error on the grid’s corners that was comparable to the one

observed during calibration. The perturbation was followed by the calibration optimization.

For each point fA of the reference image, the Monte-Carlo process leads to a bundle of epipolar lines

in the test image, whose envelope is the hyperbola of interest. From our Monte Carlo simulation we

found that the width between the two branches of the hyperbola varied between 3 and 5 pixels. The area

inside the hyperbola defines the region allowed for detection of a match to f A (a similar condition holds

between reference and auxiliary images, and between auxiliary and test images).

4.3 Detectors and descriptors

4.3.1 Detectors

A large number of the traditional feature detectors follow the same general scheme. In a first step a

saliency map is computed, which is a local function of the image. The saliency is a measure of the

local contrast or local information content in the image. Patches with a high contrast (typically corners

or highly textured areas) are expected to be detected and localized reliably between different images

of the scene, therefore the local maxima of the saliency map are selected as features. This process is

repeated after subsampling iteratively the image, to provide a multi-scale detector. In order to provide

some invariance to noise, only local maxima that exceed a given threshold are selected.

- The Forstner detector [7] relies on first order derivatives of the image intensities. It is based on the

second order moment matrix (also called squared gradient matrix)

μ =

⎡
⎣ L2

x Lx · Ly

Lx · Ly L2
y

⎤
⎦ where Lx =

∂I

∂x
and Ly =

∂I

∂y
(1)

and selects as features the local maxima of the function det(μ)/tr(μ). The second order moment matrix

is a local measure of the variation of the gradient image. It is usually integrated over a small window in

order to obtain robustness to noise and to make it a matrix of rank 2.

Several other features detectors use the second order moment matrix as well. The popular Harris de-

tector [10] selects as features the extrema of the saliency map defined by det(μ) − 0.04 · tr2(μ). The

Lucas-Tomasi-Kanade feature detector [16, 33] averages μ over a small window around each pixel, and
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selects as features the points that maximize the smallest eigenvalue of the resulting matrix. The motiva-

tion for these 3 detectors, is to select points where the image intensity has a high variability both in the

x and the y directions.

- The Hessian detector [1] is a second order filter. The saliency measure is here the negative determinant

of the matrix of second order derivatives.

- Affine-invariant versions of the previous two detectors have been developed and used by [17, 20, 27,

34, 35]. The second order moment matrix is used as an estimation of the parameters of the local shape

around the detected point. The goal is to deform the shape of the detected region so that it is invariant

to affine transformations. The affine rectification process is an iterative warping method that reduces the

image’s local second-order moment matrix at the detected feature location, to have identical eigenvalues.

- The difference-of-Gaussians detector [6, 15] selects scale-space extrema of the image filtered by a dif-

ference of Gaussians. Note that the difference-of-Gaussians filter can be considered as an approximation

of a Laplacian filter, i.e. a second-order derivative-based filter.

- The Kadir-Brady detector [12] selects locations where the local entropy has a maximum over scale

and where the intensity probability density function varies fastest.

- MSER features [19] are based on a watershed flooding [37] process performed on the image inten-

sities. The authors look at the rate of expansion of the segmented regions, as the flooding process is

performed. Features are selected at locations of slowest expansion of the catchment basins . This carries

the idea of stability to perturbations, since the regions are virtually unchanged over a range of values of

the ‘flooding level’.

Regarding speed, the detectors based Gaussian filters and their derivatives (Harris, Hessian, Difference-

of-Gaussians) are fastest, they can easily be implemented very efficiently using the recursive filters in-

troduced in [36]. The detection process typically takes 1s or less for a 3GHz machine on a 1024x768

image. If one uses the affine rectification process, computation is more expensive, similar detection

takes of the order of 5 seconds. The most expensive detector is the Kadir-Brady detector, which takes of

the order of 1 minute on a 800x600 image.
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4.3.2 Descriptors

The role of the descriptor is to characterize the local image appearance around the location identified by

the feature detector. Invariance to noise is usually obtained by low-pass filtering. Partial invariance to

lighting conditions is obtained by considering image derivatives instead of the raw greylevels.

- SIFT features [18] are computed from gradient information. Invariance to orientation is obtained by

evaluating a main orientation for each feature and rotating the local image according to this orientation

prior to the computation of the descriptor. Local appearance is then described by histograms of gradients,

which provides a degree of robustness to translation errors.

- PCA-SIFT [13] computes a primary orientation similarly to SIFT. Local patches are then projected

onto a lower-dimensional space by using PCA analysis.

- Steerable filters descriptor [9] are generated by applying banks of oriented Gaussian derivative filters

to an image. This achieves invariance to in-plane rotation without having to choose a preferred feature

orientation, but at the expense of having an overcomplete representation of the image. Scale invariance

is achieved by using various filter sizes.

- Differential invariants [28] combine local derivatives of the intensity image (up to 3rd order derivative)

into quantities which are invariant with respect to rotation.

- The shape context descriptor [2] is based on edges. Edges are extracted with the Canny filter, their

location and orientation are then quantized into histograms using log-polar coordinates.

5 Performance evaluation

5.1 Matching criteria

The performance of the different combinations of detectors and descriptors was evaluated on a fea-

ture matching problem. Each feature fC from a test image C was appearance-matched against a large

database of features. The nearest neighbor in this database was selected and tentatively matched to the

feature. The database contained both features from a reference image A of the same object (102 − 103

features depending on the detector and on the image), as well as a significantly larger number (105) of

features from unrelated images. Using this large database replicates the matching process in object/class

recognition applications, where incorrect pairs can arise from matching features to wrong images.
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Figure 8: (Panel a) Diagram showing the process used to classify feature triplets. (Panel b) Conceptual shape of
the ROC trading off false alarm rate with detection rate. The threshold Tapp on distance ratios (sec.5.2) is bounded
by [0, 1] cannot take values larger than 1 and the ROC is bounded by the curve p1 + p2 = 1.

Figure 9: A few examples of the 535 irrelevant images that were used to load the feature database. They were
obtained from Google by typing ‘things’. 105 features detected in these images were selected at random and
included in our database.
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The diagram in Fig.8-a shows the decision strategy. Starting from feature f C from the test image C, a

candidate match to fC is proposed by selecting the most similar amongst the whole database of features.

The search is performed in appearance space. The feature returned by the search is accepted or rejected

(Test#1) based on the distance metric ratio that will be described in sec.5.2. The candidate match is

accepted only if the ratio lies below a user-defined threshold Tapp.

If the candidate match is accepted based on this appearance test, the next stages aim at validating this

match. Test#2 checks the identity of the image from which the proposed match is coming. If it comes

from the image of an unrelated object, the proposed match cannot correspond to the same physical point.

The match is rejected as a false alarm.

Test#3 validates the proposed match based on geometry. The test starts from the proposed match

fA in the reference image, it uses the epipolar constraints described in sec.3 and tries to build a triplet

(initial feature - auxiliary feature - proposed match) that verifies all epipolar conditions (one constraint

in the auxiliary image and two constraints in the test image). As mentioned in sec.3, typically only zero

or one features from the test image verify all epipolar constraints generated by a given feature from the

reference image. If this feature from the test image is precisely our test feature fC , the proposed match

is declared validated and is accepted. In the alternative this is a false alarm.

In case no feature was found along the epipolar line in the auxiliary image B, the initial point f C is

discarded and doesn’t contribute to any statistics, since our inability to establish a triple match is not

caused by a poor performance of the detector on the target image C.

Note that this method doesn’t guarantee the absence of false alarms. False alarms can arise if an

incorrect auxiliary feature is used during the geometric validation - as we will see, they are very few.

However, our method offers the important advantage of being purely geometric. Any system involving

appearance vectors as an additional constraint would be dependent on the underlying descriptor and bias

our evaluation.

In order to evaluate the fraction of incorrect correspondences established and accepted by our geo-

metric system, 2 experts examined visually the triplets accepted by the system and classified them into

correct and incorrect matches. 3000 matches were selected randomly from the accepted triplets and were

visually classified, results are reported in Fig.10. The users also classified matches obtained by a sim-

pler method that would use only two images of the object (reference and test view) and a single epipolar
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Figure 10: Operator-assisted validation of our automated ground truth. A sample of 3000 pairs and triplets
was randomly selected from the set of automatically computed tentative feature matches. Two experts classified
each pair and triplet by hand as to whether it was correct or not. The fraction of wrong triplets is displayed as a
function of the maximum distance allowed to the epipolar line (curve ‘triplets’). Our experiments were conducted
using adaptive thresholds of 3-5 pixels (gray-shaded zone, see section 4.2), which as the plot shows yields 2% of
incorrect triplets. A method based on a single epipolar line constraint (‘pairs’) would have entailed a rate of wrong
correspondences three times higher. In particular, the rate of wrong correspondences is very high for features that
could be matched in two images but not in all 3 images (‘pairs − triplets’).

constraint: in this case the geometric validation consists of checking whether or not the test feature lies

on the epipolar line generated by the proposed match in the test view. The fraction of incorrect matches

is displayed as a function of the threshold on the maximum distance in pixels allowed between features

and epipolar lines. We also display the error rate for features that were successfully matched according

to the 2-views method, but failed according to the 3-views method. The method using 3 views yields

a significantly better performance: when the threshold on acceptable distances to epipolar lines varies

between 3 and 5 pixels (see sec.4.2), the error rate of the 3-views method is 2%, while the error rate of

the 2-views method is three times higher at 6%.

5.2 Distance measure in appearance space

In order to decide on acceptance or rejection of a candidate match (Test#1 in Fig.8), we need a metric

on appearance space. Instead of using directly the Euclidean or Mahalanobis distance in appearance as

in [23, 13], we use the distance ratio introduced by Lowe [18].

The proposed measure compares the distances in appearance of the query point to its best and second

best matches. In Fig.8 the query feature and its best and second best matches are denoted by f C , fA
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Figure 11: Panel a: Sample pdf of the distance ratio between best and second best match for correct correspon-
dences (green) and false alarms (red). These curves are analogous to the ones in Fig.11 of Lowe [18]. Lowe’s
correct-match density is peaked around 0.4 while ours is flat – this may be due to the fact that we use 3D ob-
jects, while D.Lowe uses flat images with added noise. Panel b:. Distributions obtained using the distance to best
match. Panel c: comparative ROC curves obtained from the distance ratio distributions in a. and the raw distance
distributions in b. The distance ratio clearly performs better.

and fA1 respectively. The criterion used is the ratio of these two distances, i.e. d(fC ,fA)
d(fC ,fA1)

. This ratio

characterizes how distinctive a given feature is, and avoids ambiguous matches. A low value means that

the best match performs significantly better than its best contender, and is thus likely to be a reliable

match. A high value of the distance ratio is obtained when the features points are clustered in a tight

group in appearance space. Those features are not distinctive enough relatively to each other. In order

to avoid a false alarm it is safer to reject the match.

The distance ratio is a convenient measure for our study, since the range of values it can take is always

[0, 1] no matter what the choice of descriptor is.
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Fig.11-a shows the resulting distribution of distance ratios conditioning on correct or incorrect matches.

The distance ratios statistics were collected during the experiments in sec.6. Correct matches and false

alarms were identified using the process described in 5.1. Fig.11-b shows the distributions of ‘raw dis-

tance to nearest neighbor’ conditioning on correct or incorrect matches. Since distances depend on the

chosen descriptor, the descriptor chosen here was SIFT.

Fig.11-c motivates further the use of the distance ratio by comparing it to raw distance on a classifica-

tion task. We computed ROC curves on the classification problem ‘correct vs. incorrect match’, based

on the conditional distributions from Fig.11-a and Fig.11-b. The parameter being varied to generate the

ROC is the threshold Tapp which decides if a match is correct or incorrect. Fig.11-c displays the results.

Depending on the descriptor, the operating point chosen for the comparisons in sec.6 leads to value of

Tapp between 0.56 and 0.70. In the ROC curves from Fig.11-c, these values are highlighted by a shaded

area. In this operating region, the distance ratios clearly outperform raw distances by a factor 3 to 5 in

terms of detection rate.

5.3 Detection and false alarm rates

As seen in the previous section and Fig.8, the system can have 3 outcomes. In the first case, the match

is rejected based on appearance (probability p0). In the second case, the match is accepted based on

distance in appearance space, but the geometry constraints are not verified and ground truth rules the

match as incorrect : this is a false alarm (probability p1). In the third alternative, the match verifies both

appearance and geometric conditions, this is a correct detection (probability p2). These probabilities

verify p0 + p1 + p2 = 1. The false alarm rate is further normalized by the number of database features

(105). This additional normalization was an arbitrary choice, motivated by the dependency of the false

alarm rate on the size of the database: the larger the database, the higher the risk of obtaining an incorrect

match during the appearance-based indexing described in sec.5.1. Detection rate and false alarm rate

can be written as

false alarm rate =
#false alarms

#attempted matches · #database
(2)

detection rate =
#detections

#attempted matches
(3)

By varying the threshold Tapp on the quality of the appearance match, we obtain a ROC curve (Fig.8-b).

Note that the detection rate does not necessarily reach 1 when Tapp is lowered to zero since some features

19



a
0 0.2 0.4 0.6 0.8 1

x 10
5

0

0.05

0.1

0.15

false alarm rate

de
te

ct
io

n 
ra

te

combination: hessian affine/SIFT

 

 

3057 features/image
2162 features/image
1529 features/image
1081 features/image
765 features/image
541 features/image
383 features/image
271 features/image

b
10

2
10

3
10

4
0

0.02

0.04

0.06

0.08

0.1

average number of keypoints per image

de
te

ct
io

n 
ra

te
 a

t o
pe

ra
tin

g 
po

in
t

Figure 12: Panel a: ROCs obtained when varying the threshold Tdet on minimum saliency that a region has to
satisfy in order to be declared a feature. The legend shows the average number of features detected per image.
The operating point is displayed by a vertical line. ROCs are displayed for the hessian-affine/SIFT combination.
Panel b: performance at the operating point, as a function of the average number of features per image. Results
are displayed for the two combinations that performed best in sec.6.1

will fail Tests#2&3 on object identity and on geometry.

5.4 Number of detected features

For the detectors based on extrema of a saliency map, the threshold Tdet that determines the minimum

saliency necessary for a region to be considered as a feature, is an important parameter. If many features

are accepted, the distinctiveness of each of them might be reduced, as the appearance descriptor of one

feature will be similar to the appearance of a feature located only a few pixels away. This causes false

alarms during appearance-based indexing of features in the database. Conversely, if Tdet is set to a high

value and only few highly salient regions are accepted as features, missed detections will occur when

a region has been detected in one image but didn’t make it to the threshold level in the second image.

In order to use each detector/descriptor combination at its optimal performance level, we performed the

matching process described in sec.5.1 with a range of values of Tdet. These values were chosen such that

the number of features would vary from ≈ 270 features (one feature every 2200 pixels on the objects),

up to ≈ 3000 features (one feature every 200 pixels on the object), with increments by a factor of
√

2 in

the number of features. Similarly to sec.6, we choose the operating point at the false alarm rate 10−6. As

expected, the detection rate for this operating point first increases, then decreases when the number of

features is increased. Fig.12-a shows the ROC curves obtained for the combination hessian-affine/SIFT.
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The operating point is indicated by a vertical line. Fig.12-b shows at this operating point, the detection

rate as a function of the number of features detected per image, for the two combinations that performed

best in sec.6: hessian-affine/SIFT and hessian-affine/shape context. In the experiments from sec.6, the

value of Tdet corresponding to the highest detection rate was chosen for the various detectors/descriptors.

6 Results and Discussion

6.1 Viewpoint change

Fig.13 shows the detection results when the viewing angle was varied and lighting/scale was held con-

stant. Panels a-h display results when varying the feature detector for a given image descriptor. Panels

a-d display the ROC curves obtained by varying the threshold Tapp in the first step of the matching

process (threshold on distinctiveness of the features’ appearance). The number of features tested is dis-

played in the legend. Panels e-h show the detection rate as a function of the viewing angle for a fixed

false alarm rate of 10−6 was chosen (one false alarm every 10 attempts - this is displayed by a gray line in

the ROC curves from Fig.13-15). This false alarm rate corresponds to different distance ratio thresholds

for each detector / descriptor combination. Those thresholds varied between 0.56 and 0.70 (a bit lower

than the 0.8 value chosen by Lowe in [18]). Fig.14a-b summarize for each descriptor, the detector that

performed best.

The Hessian-affine and difference-of-Gaussians detectors performed consistently best with all de-

scriptors. While the absolute performance of the various detectors varies when they are coupled with

different descriptors, their rankings vary very little. The combination of Hessian-affine with SIFT and

shape context obtained the best overall score, with SIFT slightly ahead. In our graphs the false alarm rate

was normalized by the size of the database (105) so that the maximum false alarm rate was 10−5. The

PCA-SIFT descriptor is only combined with difference-of-gaussians, as was done in [13]. PCA-SIFT

didn’t seem to outperform SIFT as would be expected from [13].

Note that the Difference-of-Gaussians detector performed consistently almost as well as Hessian-

affine. The Difference-of-Gaussians is simpler and faster, this motivates its use in fast recognition sys-

tems such as [18].

In the stability curves, the fraction of stable features doesn’t reach 1 when θ = 0◦. This is due to
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Figure 13: Performance for viewpoint change - each panel a-d shows the ROC curves for a given descriptor
when varying the detector. Panels e-h show the corresponding stability rates as a function of the rotation angle.
The 0◦ value is computed by matching features extracted from different images taken from the same location. The
operating point chosen for the stability curves on the right hand side is highlighted by a vertical line in the ROCs.
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Figure 14: Summary of performance for viewpoint change - Panels a-b show the combination of each descriptor
with the detector that performed best for that descriptor. Panel c. displays the stability results on a semi-log scale.
Panel d is similar to panel b, but the database used for the search tree contained only the features extracted from
the correct image (easier task which mimicks wide-baseline stereo).

several factors: first, triplets can be identified only when the match to the auxiliary image succeeds

(see section 3). The 10◦ viewpoint change between reference and auxiliary image prevents a number of

features from being identified in both images.

Another reason lies in the tree search. The use of a tree that contains both the correct image and a large

number of unrelated images replicates the matching process used in recognition applications. However,

since some features have low distinctiveness, the correct image doesn’t collect all the matches. In order

to evaluate the detection drop due to the search tree, the experiment was run again with a search tree that

contained only the features from the correct image. Fig.14-c shows the stability results, the performance

23



0 0.5 1

x 10
5

0

0.05

0.1

0.15

false alarm rate

fr
ac

tio
n 

of
 s

ta
bl

e 
ke

yp
oi

nt
s

 comparative ROCs: best detector for each descriptor

diff of gaussians / PCASift   230275 features tested
hessian affine / sift   194673 features tested
diff of gaussians / steer. filters   262970 features tested
diff of gaussians / rot. invariants   272387 features tested
hessian affine / shape context   69754 features tested

−40 −30 −20 −10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

viewpoint change (camera rotation angle in degrees)

fr
ac

tio
n 

of
 s

ta
bl

e 
ke

yp
oi

nt
s

 comparative stability: best detector for each descriptor

diff of gaussians / PCASift
hessian affine / sift
diff of gaussians / steer. filters
diff of gaussians / rot. invariants
hessian affine / shape context

Figure 15: Results for viewpoint change, using the Mahalanobis distance instead of the Euclidean distance on
appearance vectors.

is 10 − 15% higher.

A third reason is the noise present in the camera. On repeated images taken from the same viewpoint,

this noise causes 5 − 10% of the features to be unstable.

Another observation concerns the dramatic drop in number of matched features with viewpoint change.

For a viewpoint change of 30◦ the detection rate was below 5%.

Fig.15 shows the results (‘summary’ panel only) when the Euclidean distance on appearance descrip-

tors is replaced by the Mahalanobis distance. Most relative performances were not modified. Hessian-

affine performed again best, while shape context and SIFT were the best descriptors. In this case, shape

context outperformed SIFT.

6.2 Normalization

As mentioned above, the matching performance between images A and C is affected by the inability to

find a match in the auxiliary image B. One could want to normalize out this loss in order to get ‘pure’

stability results between A and C.

Let’s denote by p(θ) and p(θ1, θ2) the probabilities that given a reference feature, a match will respec-

tively exist in one view of the same scene taken from a viewpoint θ degrees apart (for pairs), and in two

views taken from viewpoints θ1 and θ2 apart from the reference image (triplets). If we assume indepen-

dence between the matching processes from A to B and from A to C, we can decompose p(θAB, θAC)

into p(θAB, θAC) = p(θAB)pfA(θAC) and normalize by p(θAB) = p(10◦) to obtain absolute performance
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figures between A and C.

Unfortunately, it seems that the matching processes from A to B and from A to C cannot be considered

to be independent. First, Fig.10 shows a different behavior between features that were successfully

matched between A, B and C, and the features that were matched between A and C, but for which

the match A − B failed. In the latter case, the fraction of incorrect matches is much higher. Another

hint comes from the stability results from Fig.14-c. Note that all combinations detectors/descriptors

show a comparable performance of 6 − 10% when the rotation is 40◦. If we were to normalize by

p(10◦), the combination that performs worst at 0◦ (i.e. difference-of-Gaussians/PCA-SIFT) would by

far perform best at 40◦. It seems very unlikely that a combination that performs poorly in easy conditions,

would outperform all others when matching becomes more difficult. Therefore we believe that matches

between A and B and between A and C are not independent. In order to avoid any inconsistency, we

did not normalize the stability results. Our system is only collecting the most stable features, those that

were not only stable between A and C, but were successfully matched into triplets.

6.3 Flat vs. 3D scenes

As mentioned in sec.1, one important motivation for the present study is the difference in terms of sta-

bility between texture-generated features extracted from images of flat scenes, and geometry-generated

features from 3D scenes. In order to illustrate this stability difference, we performed the same study as

in Sec.6.1, on one hand with 2 images of piecewise flat objects ( box of cookies, can of motor oil ), on

the other hand on two objects with a more irregular surface (toy car and dog). Results are displayed in

Fig.16. As expected, the stability is significantly higher for features extracted from the flat scenes. Note

that the stability curves are not as symmetrical with respect to the 0◦ value as the curves in Fig.13-14.

This is due to the fact that here the results are only averaged over a small number of objects.

One interesting result was that the relative performance of the various combinations detector/descriptor

was modified between flat and 3D objects. Panels e-f display stability results respectively for rotations

of 10◦ and 40◦. The fractions of stable features from flat scenes is displayed on the x axis, for 3D scenes

it is on the y axis. All combinations lie below the diagonal x = y since stability is lower for 3D scenes.

Some changes in relative performances are highlighted. For example, for flat scenes MSER/SIFT and

MSER/shape context performed best, while their performance was only average for 3D scenes. Con-
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Figure 16: Flat vs. 3D objects - Panel a. shows the stability curves obtained for SIFT for the two piecewise flat
objects in panel b. Similarly, panel c. shows the SIFT stability curves for the two 3D objects in panel d. ‘Flat’
features are significantly more robust to viewpoint change. Panels e-f show the fractions of stable features for the
same piecewise 2D objects versus the same 3D objects, for all combinations of detectors / descriptors in this study.
Scatter plots are displayed for rotations of 10◦ and 40◦. A few combinations whose relative performance changes
significantly are highlighted.
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Figure 17: (Left panel) ROCs for variations in lighting conditions. Results are averaged over 3 lighting conditions.
(Right panel) ROCs for variations in scale.

versely, difference-of-Gaussians/SIFT, difference-of-Gaussians/shape context, and hessian-affine/shape

context, which were the best combinations for 3D scenes, were outperformed on 2D objects.

6.4 Lighting and scale change

Fig.17(left) shows the results obtained when changing lighting conditions and keeping the viewpoint

unchanged. This task is easier: since the position of the features shouldn’t change, we don’t need

to introduce the auxiliary image B. As a result, the detection rates reported in the ROC curves are

significantly higher than in the study of viewpoint changes. Only the ‘summary’ panels with the best

detector for each descriptor are displayed. This time, the combination which achieved best performance

was Harris-affine combined with SIFT.

Fig.17(right) displays the results for a change of scale. The scale change was performed by switching

the camera’s focal length from 14.6mm to 7.0. Again, the figure displays only the ‘summary’ panel.

Hessian-affine combined with shape context and Harris-affine combined with SIFT obtained the best

results.

7 Discussion and Conclusions

We compared the most popular feature detectors and descriptors on a benchmark designed to assess their

performance in recognition of 3D objects. In a nutshell: we find that the best overall choice is using an
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affine-rectified detector [20] followed by a SIFT [18] or shape-context descriptor [2]. These detectors

and descriptor were the best when tested for robustness to change in viewpoint, change in lighting and

change in scale. Amongst detectors, runner-ups are the Hessian-affine detector [20], which performed

well for viewpoint change and scale change, and the Harris-affine detector [20], which performed well

for lighting change and scale change.

Our benchmark differs from previous work from Mikolajczyk & Schmid in that we use a large and

heterogeneous collection of 100 3D objects, rather than a handful of flat scenes. We also use Lowe’s

ratio criterion, rather than absolute distance, in order to establish correspondence in appearance space.

This is a more realistic approximation of object recognition. A major difference with their findings is a

significantly lower stability of 3D features. Only a small fraction of all features (less than 3%) can be

matched for viewpoint changes beyond 30◦. The situation is a bit better when the goal is stereo-vision

or mosaicking (Fig.14-c), where features are matched across a small number of images. Our results

on descriptors favor SIFT and shape context descriptors, and are in agreement with [23]. However,

regarding detectors, not all affine-invariant methods are equivalent as suggested in [21], e.g. MSER

performs poorly on 3D objects while it is very stable on flat surfaces.

We find significant differences in performance with respect to a previous study on 3D scenes [8]. One

possible reason for these differences is the particular statistics of their scenes, which appear to contain

a high proportion of highly textured quasi-flat surfaces (boxes, desktops, building facades, see Fig.6

in [8]). This hypothesis is supported by the fact that our measurements on piecewise flat objects (Fig.16)

are more consistent with their findings. Another difference with their study is that we establish ground

truth correspondence purely geometrically, while they use appearance matching as well, which may bias

the evaluation.

An additional contribution of this paper is a new method for establishing geometrical features matches

in different views of 3D objects. Using epipolar constraints, we are able to extract with high reliabil-

ity (2% wrong matches) ground truth matches from 3D images. This allowed us to step up detector-

descriptor evaluations from 2D scenes to 3D objects. Comparing to other 3D benchmarks, the ability

to rely on an automatic method, rather than painfully acquired manual ground truth, allowed us to work

with a large number of heterogeneous 3D objects. Our setup is inexpensive and easy to reproduce for

collecting statistics on correct matches between 3D images. In particular, those statistics will be helpful
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for tuning recognition algorithms such as [18, 5, 25, 26]. Our database of 100 objects viewed from 72

positions with three lighting conditions will be available on our web site.
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