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Severe architectural and timing constraints within the primate visual sys-
tem support the conjecture that the early phase of object recognition in
the brain is based on a feedforward feature-extraction hierarchy. To as-
sess the plausibility of this conjecture in an engineering context, a diffi-
cult three-dimensional object recognition domain was developed to chal-
lenge a pure feedforward, receptive-field-based recognition model called
SEEMORE. SEEMORE is based on 102 viewpoint-invariant nonlinear fil-
ters that as a group are sensitive to contour, texture, and color cues. The
visual domain consists of 100 real objects of many different types, in-
cluding rigid (shovel), nonrigid (telephone cord), and statistical (maple
leaf cluster) objects and photographs of complex scenes. Objects were in-
dividually presented in color video images under normal room lighting
conditions. Based on 12 to 36 training views, SEEMORE was required to
recognize unnormalized test views of objects that could vary in position,
orientation in the image plane and in depth, and scale (factor of 2); for non-
rigid objects, recognition was also tested under gross shape deformations.
Correct classification performance on a test set consisting of 600 novel ob-
ject views was 97 percent (chance was 1 percent) and was comparable for
the subset of 15 nonrigid objects. Performance was also measured under
a variety of image degradation conditions, including partial occlusion,
limited clutter, color shift, and additive noise. Generalization behavior
and classification errors illustrate the emergence of several striking nat-
ural shape categories that are not explicitly encoded in the dimensions
of the feature space. It is concluded that in the light of the vast hard-
ware resources available in the ventral stream of the primate visual sys-
tem relative to those exercised here, the appealingly simple feature-space
conjecture remains worthy of serious consideration as a neurobiological
model.

1 Introduction

The human visual system can recognize unprimed views of common ob-
jects at sustained rates in excess of 10 per second (Potter, 1976; Subramaniam,
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Biederman, Kalocsai, & Madigan, 1995). In neurophysiological terms, the
implication of this astonishing fact is that an object’s identity can be com-
puted by a 100-ms-wide time slice of neural activity propagating through
the recognition “pipe” from the retina to the higher reaches of the visual sys-
tem. At typical firing rates of visual neurons, we may surmise that under
these special conditions, each neuron in the visual pathway devotes fewer
than a dozen action potentials to the processing of any single object’s im-
age. While these figures bear primarily on the throughput of the recognition
pipe (objects per second), a recent electroencephalogram study reveals that
the length of the pipe from retina to recognition is probably no longer than
155 ms (DiGirolamo & Kanwisher, 1995). These results are also roughly
consistent with known response latencies of neurons in the object recog-
nition areas of inferotemporal cortex, which range around 100 ms (Oram
& Perrett, 1992; Gochin, Colombo, Dorfman, Gerstein, & Gross, 1994). Be-
yond such feats of sheer speed, the human visual system easily recognizes
a wide variety of stimuli, including rigid, articulated, and entirely nonrigid
two-dimensional (2D) and three-dimensional (3D) objects, faces, statistical
or fractal objects, surface textures, and views of complex natural scenes,
while displaying remarkable insensitivity to changes in viewpoint, partial
occlusion, and clutter.

How can a visual system work so well and so fast? The circumstances
of biological vision suggest a solution of low time complexity (few steps)
but high space complexity (many parallel processes)—synaptic connections
among neurons in the cortical object recognition pathway probably number
between 10 and 100 trillion.1 One appealingly simple notion is that the vi-
sual system is organized as a feedforward feature-extracting hierarchy that
builds progressively more complex and viewpoint-invariant features useful
for identifying objects, where invariance over a group of transformations
is achieved by summing over viewpoint-specific elemental representations
(Pitts & McCullough, 1947). This class of algorithm has been brought to bear
with great success, for example, in the realm of optical character recogni-
tion (Fukushima, Miyake, & Ito, 1983; LeCun et al., 1990). According to this
view, and in correspondence with the axioms of statistical pattern recogni-
tion, visual object recognition in the brain is the process of mapping retinal
pixels into a feature space that is better suited (than pixels) to the viewpoint-
invariant classification and identification problems faced by visual animals.
Within this feature space, represented by the activity of neurons at the top of
the hierarchy, the similarity of one object view to another is given by a sim-
ple (e.g., Euclidean) distance calculation; recognition of an input is achieved
by finding the identity or class of the most similar training view previously

1 This assumes 1014 to 1015 synapses in the brain, 90 percent of these due to the cerebral
cortex, one-third of these due to the visual system, and one-third of these accounting for
the “what” pathway.
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stored in memory. Feature dimensions are chosen such that large changes in
object pose produce relatively small excursions in feature space, while small
changes in object “quality” (shape, texture, color) produce relatively large
excursions in feature space. Where 3D objects or scenes are to be recognized
over large regions of the viewing sphere, a small set of reference views is
stored during learning, leading to a “view-based” approach (Edelman &
Bulthoff, 1992; Logothetis, Pals, Bulthoff, & Poggio, 1994; Murase & Nayar,
1995).

In evaluating the plausibility of this feedforward feature-extraction sce-
nario as a model for biological vision, it is useful to consider several desirable
properties of a feature-space representation as dictated by the “computa-
tional ecology” of natural vision. In particular, we might expect the brain to
construct visual features that are:

1. Large in number, relating to the fact that sparse, high-dimensional fea-
ture representations provide fundamental advantages for fast, inex-
pensive recognition, especially large signal-to-noise ratios that allow
objects to be recognized prior to explicit segmentation (Califano &
Mohan, 1994; Kanerva, 1988).

2. Useful, that is, high-level features should be relatively sensitive to
object quality—and hence identity—but relatively insensitive to an
object’s pose or configuration.

3. Dominated by spatially localized measures, relating to the need to cope
with nonrigid object transformations, which often preserve local but
not global structure; the need to cope with object textures, defined in
large part by local relative-orientation structure; and the need to cope
with occlusion and clutter, which are least disruptive to an object’s
internal code when derived from features with localized support.

4. Driven by multiple visual cues, relating to the need to maximize object
discrimination power by using all available visual cues, the need to
represent objects of many different types richly, and the need to buffer
the visual representation of objects or scenes against a variety of forms
of image degradation, to which different visual cues are by nature
differentially sensitive.

In this context, recent neurophysiological results (Kobatake & Tanaka,
1994; Logothetis et al., 1994) that have extended classical results from other
groups (Gross, Rocha-Mironda, & Bender, 1972; Perrett, Rolls, & Caan, 1982;
Schwartz, Desimone, Albright, & Gross, 1983; Desimone, Albright, Gross,
& Bruce, 1984) are intriguing, as they demonstrate a substantial population
of neurons in the “object recognition areas” of the primate visual system
(Mishkin, 1982) that respond best to specific complex minipatterns (e.g., lo-
calized conjunctions of contour, texture, and color elements). In many cases,
these neurons exhibit considerable insensitivity to changes in viewpoint-
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related parameters, such as stimulus position and scale (Ito, Tamura, Fujita,
& Tanaka, 1995), while remaining selective for their preferred minipatterns.

Such empirical data are thus on their face suggestive of a feature-extraction
hierarchy designed to cope with known ecological pressures. However, se-
rious theoretical concerns persist regarding the limitations of bottom-up
feature-space approaches, cropping up under a variety of guises:

1. Feature-space methods are essentially template-matching methods
and so require an intractable number of templates to cope with in-
puts that have been rotated, scaled, partly occluded, nonrigidly trans-
formed, or presented under varying lighting conditions.

2. Feature-space approaches lack a top-down component essential for
resolving featural ambiguities present in real images.

3. Feature-space methods do not scale well to high dimensions (i.e., large
numbers of features), either because it is not practical to learn or oth-
erwise assemble a sufficiently large number of sufficiently useful fea-
tures, too many dimensions of noise necessarily overwhelm too few
dimensions of signal, or high-dimensional methods are computation-
ally intractable or require too much data, even for a brain.

Most of these concerns have been addressed in recent years, as feature-
space approaches and their variants have been applied with success in a
variety of object recognition domains (Fukushima et al., 1983; Swain and
Ballard, 1991; Viola, 1993; Lades et al., 1993; Califano & Mohan, 1994; Murase
& Nayar, 1995; Rao & Ballard, 1995; Amit, Geman, & Wilder, 1995; Schiele
& Crowley, 1996). However, the conjecture that a feature-space approach
based on feedforward receptive-field-style computations could account for
the prodigious recognition capacities of the primate brain as yet lacks di-
rect support in the modeling literature. Existing approaches have generally
involved one or more assumptions that place them squarely outside the
biological “paradigm” for general-purpose visual recognition, such as use
of small object corpus (typically no more than a few dozen objects), limited
range of object types (e.g., faces or rigid volumetric objects), feature com-
putations not amenable to receptive-field-style computations (e.g., use of
sophisticated geometric invariants), or strong viewpoint assumptions, or
corresponding explicit image prenormalization operations (typical in opti-
cal character recognition and face recognition).

Against this backdrop, SEEMORE was developed to assess more directly
the plausibility of the feature-space account as a biological model for rapid,
general-purpose object recognition. Key design goals prescribed a visual
representation that (1) relied exclusively on geometrically simple receptive-
field-style computations, (2) operated directly on input images without shift,
scale, or other explicit object prenormalization steps, (3) could cope with a
large number of real 3D objects of many different types, (4) could recognize
objects over 6 degrees of freedom of viewpoint, gross nonrigid shape dis-
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tortions, and partial occlusion, and (5) exhibited a significant capacity for
generalization across natural object categories.

SEEMORE’s visual representation is composed of 102 feature channels
that emphasize spatially localized filter computations and are collectively
sensitive to contour shape, color, and texture cues. SEEMORE’s architecture
is similar in spirit to the color histogramming approach of Swain and Bal-
lard (1991) but includes spatially structured features that also provide for
shape-based generalization. Experiments reveal good recognition perfor-
mance in a viewpoint- and configuration-invariant 3D object recognition
problem with 100 objects, including objects that are rigid, nonrigid, and
“statistical” in nature and photographs of complex scenes. Perhaps most
interesting, SEEMORE’s patterns of generalization reveal the emergence of
several striking object catagories that are not explicitly encoded in the 102
feature-space dimensions. (A short report describing this work appeared in
Mel, 1996.)

2 Methods

2.1 SEEMORE’S Visual World. SEEMORE’s database contains 100 com-
mon 3D objects and photogaphs of scenes, each represented by a set of pre-
segmented color video images (see Figure 1). The training set consisted of
12 to 36 views of each object as follows. For rigid objects, 12 training views
were chosen at roughly 60-degree intervals in depth around the viewing
sphere (see Figure 2A), and each view was then scaled to yield a total of
three images at 67 percent, 100 percent, and 150 percent. Image plane ori-
entation was allowed to vary arbitrarily. For nonrigid objects, 12 training
views were chosen in random poses (see Figure 2B).

During a recognition trial, SEEMORE was required to identify novel test
images of the database objects. For rigid objects, test images were drawn
from the viewpoint interstices of the training set, excluding highly fore-
shortened views (e.g., bottom of can). Each test view could therefore be
presumed to be correctly recognizable but never closer than roughly 30
degrees in orientation in depth or 22 percent in scale to the nearest train-
ing view of the object, while position and orientation in the image plane
could vary arbitrarily. For nonrigid objects, test images consisted of entirely
novel random poses. Each test view depicted the object presented alone on
a smooth background.

In some recognition trials, test views were systematically degraded. The
five degradation conditions were (1) scrambled, in which the object view was
cut up and the pieces rearranged and reflected (see Figure 3A), (2) occluded, in
which 50 percent of the object view was blacked out (see Figure 3B), (3) clut-
tered, in which a second object—a randomly colored lowercase character—
was superimposed onto the margin of the image to add limited pattern
clutter while minimizing occlusion (see Figure 3C), (4) colorized, in which
two of the three RGB channels were scaled either up or down by 30 per-
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Figure 1: The database contains 100 objects of many different types, includ-
ing rigid (soup can), nonrigid (necktie), statistical (bunch of grapes), and pho-
tographs of complex indoor and outdoor scenes.

cent while maintaining constant intensity (see Figure 3D), and (5) noisy, in
which the images were subjected to uniform additive pixel noise with mean
30 percent of the maximum pixel value (see Figure 3E).

2.2 Feature Channels. SEEMORE’s internal representation of a view of
an object is encoded by a set of feature channels. The ith channel is based on
an elemental nonlinear filter fi(x, y, θ1, θ2, . . .), parameterized by position in
the visual field and zero or more internal degrees of freedom (see Figure 4).
Each channel is by design relatively sensitive to changes in the image that
are strongly related to object identity, such as the object’s shape, color, or
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Figure 2: (A) Training views of rigid objects were sampled uniformly about
the 3D viewing sphere. (B) Training views of nonrigid objects were drawn at
random from the object’s configuration space.

texture, while remaining relatively insensitive to changes in the image that
are unrelated to object identity, such as are caused by changes in the object’s
pose. In practice, this invariance is achieved in a straightforward way for
each channel by subsampling and summing the output of the elemental
channel filter over the entire visual field and one or more of its internal
degrees of freedom, giving a channel output Fi =

∑
x,y,θ1,...

, fi(). For exam-
ple, a particular shape-sensitive channel might “look” for the image-plane
projections of right-angle corners, over the entire visual field, 360 degrees
of rotation in the image plane, 30 degrees of rotation in depth, one octave in
scale, and tolerating partial occlusion or slight misorientation of the elemen-
tal contours that define the right angle. In general, then, Fi may be viewed
as a “cell” with a large receptive field whose firing rate is an estimate of the
number of occurrences of distal feature i in the visual work space over a
large range of viewing parameters.

SEEMORE’s architecture consists of 102 feature channels, whose outputs
form an input vector to a nearest-neighbor classifer (see Figure 5). Following
the design of the individual channels, the channel vector F = {F1, . . . ,F102}
is (1) insensitive to changes in image plane position and orientation of the
object, (2) modestly sensitive to changes in object scale, orientation in depth,
or nonrigid deformation, but (3) highly sensitive to object quality as pertains
to object identity. Within this representation, total memory storage for all
views of an object ranged from 1224 to 3672 integers.

As shown in Figure 6, SEEMORE’s channels fall into in five groups: (1) 23
color channels, each of which responds to a small blob of color parame-
terized by “best” hue and saturation, (2) 11 coarse-scale intensity corner
channels parameterized by open angle, (3) 12 “blob” features, parameter-
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Figure 3: Sensitivity of recognition performance to various forms of image
degradation was studied. Examples of the five degradation conditions are
shown: (A) scrambled, (B) occluded, (C) cluttered, (D) colorized, and (E) noisy.
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Figure 4: The ith feature channel is based on an elemental nonlinear filter
fi(x, y, θ1, . . .), which is subsampled across the image, at a range of image-plane
orientations, and over any of the filters’ additional internal degrees of freedom.
The output of the ith channel Fi is the sum over all elemental filter outputs within
that channel.

ized by the shape (round and elongated) and size (small, medium, and large)
of bright and dark intensity blobs, (4) 24 contour-shape features, including
straight angles, curve segments of varying radius, and parallel and oblique
line combinations, and (5) 16 shape- and texture-related features based on
the outputs of Gabor functions at five scales and eight orientations. The im-
plementations of the channel groups were crude, in the interest of achieving
a working, multiple-cue system with minimal development time. Images
were grabbed using an off-the-shelf Sony S-Video Camcorder and SunVideo
digitizing board that provided 11 color bits per pixel (YUV); images were
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Figure 5: SEEMORE’s architecture consists of a set of channels that provides in-
put to a nearest-neighbor classifier. Since each channel is by itself insensitive to
translation and rotation in the image plane and is slowly varying as an object
rotates in depth, the output vector F for the complete set of channels is simi-
larly invariant to these transformations. However, F remains highly sensitive to
changes in object quality, and hence object identity.

converted to RGB format for all subsequent processing. Implementation
details of the 102 feature channels are described below.

2.2.1 Twenty-three Color Channels. The image was first low-pass-filtered
by two octaves using a five-element separable mask (1/16, 1/4, 3/8, 1/4,
1/16), and subsampled to a size of 120× 120 color pixels. In the following,
for R, G, B ∈ [0, 1], hue, saturation, and intensity (HSI) are defined as H =
arctan(

√
3(G− B)/((R− G)+ (R− B))), S = 1.0−min(R,G,B)/I, I = (R+

G + B)/3, and sigmoids g and h with threshold θ and gain s are defined as
g(x, θ, s) = 1/(1+exp((θ−x)∗s)), and h = 1−g. Of the 23 color channels, 22
(11 hues at 2 levels of saturation) were derived as follows. Around the hue
circle, 1D “receptive field” centers were placed at 11 evenly spaced hues,
including 0 degree. Response profiles huei, i ∈ {1, . . . , 11} were triangular
and symmetrical, returning a peak score of 1.0 in response to the center
hue, with a linear decay to 0 over a 45-degree radius. The 11 high- and low-
saturation unit pairs shared the same hue centers. The high-saturation unit
outputs yhisat

i were computed as a product of the hue score and two sigmoidal
factors that (1) fell to 0 as the saturation crossed into the range of the low-
saturation units and (2) fell to 0 at low-intensity values where chromaticity
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Figure 6: SEEMORE’s 102 channels fall into five groups: (1) 23 circular
hue/saturation channels, (2) 11 coarse-scale intensity corner channels, (3) 12
circular and oriented-intensity blobs, (4) 24 contour-shape features, including
curves, junctions, and parallel and oblique contour pairs, and (5) 16 oriented-
energy and relative-orientation features based on the outputs of Gabor functions
at several scales and orientations.
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information is unreliable, giving yhisat
i = huei · g(S, 0.4, 10) · g(I, 0.2, 20). The

low-saturation unit outputs ylowsat
i were computed as a product of the hue

score and three sigmoidal factors—the additional sigmoid was needed to
bound the saturation valued both from above and below—giving ylowsat

i =
huei ·h(S, 0.4, 10) · g(S, 0.15, 20) · g(I, 0.2, 20). A separate white unit selected
for pixels of high intensity and low saturation, with an output given by
ywhite = g(I, 0.6, 20) · h(S, 0.15, 20). Black pixels were ignored. Each of the
23 color functions was evaluated at every pixel in the image; any response
value exceeding 0.1 generated a count within a histogram containing 23
bins, one for each “color.”

2.2.2 Eleven Intensity Corner Channels. The image was first low-pass-
filtered and subsampled by two octaves to a size of 120 × 120 intensity
pixels. A crude-oriented intensity edge detector was run in 12 increments of
30 degrees around the circle centered at each pixel; the length of the edge was
approximately 20 pixels when mapped back into the full-resolution image
(480 × 480). The criterion for detection of an oriented edge was twofold:
(1) An intensity gradient of a consistent sign should exist across the edge at
multiple sites along the length of the edge, and (2) the mean deviation of
intensity (from its average) should be small along the length of the edge on
both sides.

Both criteria were computed based on pairs of pixels symmetrically strad-
dling the edge along its length, as shown in Figure 7. The numerical score
for an edge defined in terms of left and right pixels from three pixel pairs in-
dexed by i was given by y =∏i g(|IR

i −IL
i |, 0.08, 30)−λ∑i(|IR

i −IR
i |+|IL

i −IL
i |),

where λ = 0.8 controlled the relative importance of the gradient versus
smoothness constraints. The result was passed through a hard binary thresh-
old giving 1 for y > 0, 0 otherwise. The 12 oriented binary edge maps were
used to find intensity corners, which were sought at every pixel. Corners
were parameterized only by open angle (from 30 to 330 degrees in 30-degree
increments), yielding 11 corner types and 11 corresponding histogram bins.
A corner was scored whenever two edge segments of the proper relative
orientation and offset were found in the image at any absolute orientation,
and the corresponding histogram bin was incremented.

2.2.3 Twelve Intensity Blob Channels. The image was first low-pass-fil-
tered and subsampled by two, three, and four octaves to yield image sizes
of from 120 × 120 to 30 × 30 intensity pixels. The operations described be-
low were carried out at each of the three scales. An intensity blob consisted
of a set of intensity gradients of the proper sign in an elliptical configura-
tion about a central pixel. They were thus elliptical versions of the straight
edge segments of Figure 7, based on several sigmoidally modulated pixel
pair intensity differences. However, in lieu of three gradient terms strad-
dling a straight edge combined multiplicatively, a sum of 12 gradient terms
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Figure 7: Straight-oriented edge segments were detected in the intensity im-
age based on (1) sign consistency of cross-edge intensity differences, measured
at several sample pairs of pixels, and (2) along-edge intensity “smoothness,”
measured as mean deviation in intensity on either side of putative edge.

across an elliptical contour was computed. A smoothness term was again
given by the mean deviation of intensity along the inside and outside of
the circular contour; this term was subtracted from the across-contour term
with λ = 1.0. If a threshold of 4.0 was exceeded, then a blob was scored,
and the corresponding histogram bin was incremented. Twelve total bins
corresponded to light or dark, round or elongated intensity blobs, at three
scales.

2.2.4 Forty Generalized Contour Channels. The image was low-pass-fil-
tered as before but maintained at full resolution (480 × 480). An oriented
edge detector was run that differed in three ways from that underlying the
intensity corner channels. First, edges consisted of five pairs of across-edge
pixels spanning a total length of approximately 18 original image pixels at
full resolution, and were computed at 7.5 degree intervals around the half-
circle. Second, an edge was scored iff all five gradient terms exceeded a hard
threshold (in lieu of a product of sigmoids), and no along-contour smooth-
ness penalty term was used. However, the gradient threshold differed from
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edge to edge, given by an estimate of the along-edge gradient (average dif-
ference of end pixel values on both sides of edge). Third, an edge was scored
if it existed according to the above criteria in any of the RGB channels, but
neither the RGB channel nor the polarity of the edge was stored. As such,
the output of the edge-detecting stage was a set of 24 binary contour maps
representing orientations from 0 to 172.5 degrees, in 7.5-degree intervals at
a resolution of 240 × 240 pixels. Every edge in the binary edge maps was
“generalized” (copied) into a 2×2 block of neighboring pixels, in order effec-
tively to relax the position tolerances in the subsequent compound-feature
detection step. Forty compound contour features were then tested for at
every pixel (240 × 240) and orientation (48 steps of 7.5 degrees). A com-
pound feature consisted of six oriented contours with proper offsets and
relative orientations; when at least five were present, the compound feature
was scored, and its histogram bin was incremented. Various optimizations
were used to speed computation, including heuristics for early rejection
of both pixels and compound features. As shown in Figure 6, features in-
cluded seven long, simple contours (straight plus 6 degrees of curvature),
nine corner features with angles from 30 to 150 degrees, in 15-degree steps
(analogous to intensity corners but with longer limbs, higher angular reso-
lution, and tolerating up to one missing link), and parallel and oblique line
pairs (12 each at a range of separations from 16 to 82 pixels in increments of
6 pixels).

2.2.5 Sixteen Gabor-Derived “Texture” Channels. The largest central
square in the original image was reduced to 128 × 128 pixels. Forty Ga-
bor filters were applied to the image at eight orientations and five scales
using a Fast Fourier Transform (FFT) (scales varied from X pixels per cycle
to Y pixels per cycle in powers of

√
2). Energy images were computed by

squaring and summing corresponding pixels in the sine and cosine com-
ponents of the Gabor output. The energy pixel values were then summed
across all eight orientation images at each scale, giving the total oriented
energy at each scale as the values of the first five texture channels. The next
five texture channels consisted of the variances of the oriented energy at
each scale, gotten by computing the mean squared deviation of the total en-
ergy at each orientation from the mean total energy for all orientations, for
that scale. High variances signified images with energy distributed nonuni-
formly across the orientation channels, such as an image with one or two
dominant orientations. The Gabor energy images were then passed through
a fixed binary thresholding operation chosen for each scale to emphasize lo-
calization of perceptually relevant oriented image structure. The remaining
six texture channels measured probability of relative orientation energy in
the image, parameterized by orientation difference (0 degrees, 45 degrees,
90 degrees) and image distance (d < 30 pixels, d ≥ 30 pixels). All relevant
suprathreshold pixel pairs were considered and used to generate counts in
the six histogram bins.
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2.3 The Learning Rule. While nearest-neighbor classification techniques
are remarkably powerful given their simplicity (Friedman, 1994), the prob-
lem of scaling feature dimensions in order to minimize classification error
in high dimension remains an experimental art. The need for such opti-
mization is particularly acute in cases, including the present case, where
feature dimensions are grossly inhomogeneous in terms of their variances,
entropy, and individual classification power and where strong, poorly char-
acterized correlations exist among the features dimensions. The notion that
features should be simply normalized by their variances (i.e., “sphering”
the data) does not take account of the individual utility of the features for
the classification problem at hand or of the correlations between features.

One approach to this problem has been to project a high-dimensional
feature space onto the low-dimensional subspace in which the exemplars
of each class are as tightly clustered as possible while the class means are
as widely dispersed as possible (e.g., Fisher’s linear discriminant; Duda
& Hart, 1973). Where dimensionality reduction is not needed for computa-
tional or other reasons, classification in all available dimensions in principle
allows for improved classification performance. Thus, related methods in-
volve finding a “clustering transformation” of the input space that max-
imizes between-class distances while minimizing within-class distances
(Fukunaga, 1990).

In the approach here, an objective function that predicts classification
performance using all dimensions is maximized using gradient ascent. The
formulation is based on the standard assumption that, on average, two
views of the same object are more similar to each other than two views of
different objects. Thus, measurements are taken centered at every view j in
the database, comparing the average distance from j to views of the same
object with the average distance from j to views of different objects, where
the comparison is normalized by a local measure of the dispersion of inter-
class distances. In this way, the mean distance to views of the same object
can be treated as a z-score with respect to the distribution of distances to
different objects (see Figure 8). The normalization is local to each view since
the dispersion of object views can vary substantially in different regions of
the feature space. Classification performance is expected to increase as these
z-scores increase, averaged over the entire database of views. We begin by
writing the weighted city-block distance between two views represented as
N-dimensional vectors j, k as

Djk = D(j, k,w) =
N∑

i=1

wiDi
jk,

where i is the feature index, wi is a weight, and Di
jk = |ji − ki| is the distance

along single feature dimension i. The mean distance between view j and all
views k of the same object, or of different objects, is written, respectively, as

D≡j = 〈Djk〉, ∀k ≡ j
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Figure 8: Graphical representation of D≡j, D 6≡j, and σ i
6≡j. Measured distances

from j to members of same object class (shown as solid lines) give rise to distri-
bution 1 whose mean is D≡j. Similarly, measured distances from j to members
of all other classes give rise to distribution 2 whose (larger) mean is D 6≡j. The
predicted “goodness” of feature i in the neighborhood of view j, Gj, is then given
by the z-score (D6≡j −D≡j)/σ 6≡j.

or

D 6≡j = 〈Djk〉, ∀k 6≡ j,

where the identity sign is used to indicate all views k of the same (≡ j) or
different (6≡ j) object as j. Analogous mean distance quantities are defined
for the single feature dimension i, that is,

Di≡j = 〈Di
jk〉, ∀k ≡ j

and

Di 6≡j = 〈Di
jk〉, ∀k 6≡ j .

The dispersion about view j of distances to views k of different objects
is given by the standard deviation, for both the one-dimensional and N-
dimensional cases,

σ i
6≡j =

√
〈(Di

jk −Di 6≡j)2〉, ∀k 6≡ j

or

σ 6≡j =
√
〈(Djk −D6≡j)2〉, ∀k 6≡ j .
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Both one-dimensional and N-dimensional feature “goodness” measures
may then be defined in the neighborhood of view j as

Gi
j =

Di 6≡j −Di≡j

σ i
6≡j

and

Gj =
D6≡j −D≡j

σ6≡j
.

The global N-dimensional feature goodness measure is then given by

G = 〈Gj〉.
G is maximized when, averaged over all views j in the database, the

average distance to views of the same object is many standard deviations
smaller than the average distance to views of different objects. G was opti-
mized using gradient ascent, using the following weight-update rule:

1wi ∝ δG
δwi
=
〈
σ i
6≡j

σ6≡j
[Gi

j − Gj · Cov 6≡j(Di,D)]

〉
, ∀j (2.1)

where

Cov6≡j(Di,D) =
〈(Di

jk −Di 6≡j)(Djk −D 6≡j)〉, ∀k 6≡ j

σ i
6≡jσ 6≡j

is the covariance of the one-dimensional distance (for feature i) and the
weighted N-dimensional city-block distance from view j to views of dif-
ferent objects. Loosely speaking, the square bracketed term of equation 2.1
indicates that a feature’s weight tends to increase until its individual good-
ness accounts for a specific fraction of the global feature goodness, where
the fraction is given by the covariance term.

2.4 Assessing Recognition Performance. SEEMORE’s recognition per-
formance was assessed quantitatively as follows. A test set consisting of
600 novel views (100 objects × 6 views) was culled from the database, as
previously described. In some cases, the raw images were preprocessed
according to one of the five degradation conditions (scrambled, occluded,
colorized, noisy, or cluttered). Then the intact or degraded images were
presented to SEEMORE for identification.

In the course of this work, it was noted empirically that a compressive
transform on the feature dimensions (histogram values) led to improved
classification performance; prior to all learning and recognition operations,
therefore, each feature value was replaced by its natural logarithm (0 values
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were first replaced with a small positive constant to prevent the logarithm
from blowing up).

For each test view j, the distance Djt was computed for every training
view t in the database, and the nearest neighbor was chosen as the best
match.2 The logarithmic transform of the feature dimensions thus tied D
to the ratios of individual feature values in two images rather than their
arithmetic differences.

3 Results

3.1 Intact Images. Recognition time on a Sparc-20 was 1–2 minutes per
view; the bulk of the time was devoted to shape processing, with under 2
seconds required for matching.

Recognition results are summarized in Table 1, reported as the proportion
of test views that were correctly classified. Performance using all 102 chan-
nels for the 600 novel object views in the intact test set was 96.7 percent;
the chance rate of correct classification was 1 percent. Across recognition
conditions, second-best matches usually accounted for approximately half
the errors. Results were broken down in terms of the separate contributions
to recognition performance of color-related versus shape-related feature
channels. Performance using only the 23 color-related channels was 87.3
percent, and using only the 79 shape-related channels was 79.7 percent. Re-
markably, very similar performance figures were obtained for the subset of
90 test views of the nonrigid objects, which included several scarves, a bike
chain, necklace, belt, sock, necktie, maple leaf cluster, bunch of grapes, knit
bag, and telephone cord. Thus, a novel random configuration of a telephone
cord was as easily recognized as a novel view of a shovel.

3.2 Degraded Images. Results for the scrambled, occluded, colorized,
noisy, and cluttered test sets are also shown in Table 1. Under the scram-
bling manipulation, overall recognition performance was only modestly
affected, due primarily to the stability of the color channels under this ma-
nipulation, while the shape-related channels showed a significant drop in
performance as expected (from 80 to 62 percent). When test views were
half-occluded, recognition performance fell to 79 percent, due to the dis-
ruptive effect of occlusion on both color- and shape-related channels; the

2 In informal experimentation with a number of variants of the nearest-neighbor clas-
sifier, including a variety of different distance metrics, typically only small differences in
performance were seen, and the reasons for these changes in performance were obscure.
This work emphasized the power of the visual representation rather than the benchmark-
ing of standard classifiers and their variants; given that nearest-neighbor classifiers are fast
and conceptually simple, and are known to perform well often in high-dimensional spaces
in comparison to more sophisticated classifiers (Friedman, 1994), this single method was
used throughout the trials reported in this article.
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Table 1: Summary of Results.

Intact Nonrigid Scrambled Occluded Cluttered Colorized Noisy

Shape only 79.7 76.7 62.2 38.2 57.3 43.5 35.8
Color only 87.3 94.4 86.5 72.2 61.2 6.8 47.2
Color and shape 96.7 97.8 93.7 79.0 79.0 19.8 58.3

relatively severe disruption of the shape representation was in part due to
the more spatially heterogeneous distribution of distinctive (i.e., necessary)
shape cues and in part to the introduction of spurious contours and other
accidental features at the occluding boundary. The color shift manipulation
cut recognition performance to under 20 percent, an indication of the com-
plete lack of color constancy in SEEMORE’s feature channels. Note that while
shape-related channels did not explicitly indicate the color of origin of their
respective features, they depended on both color and intensity and were
thus affected by the colorization manipulation as well. The clutter condi-
tion, which simulated the presence of a distractor object, dropped correct
recognition rate to just below 80 percent. The additive noise condition dis-
rupted recognition performance along both shape and color axes, cutting
overall performance to 58 percent, indicative of poor high-frequency noise
tolerance in the underlying feature channels.

3.3 Generalization Behavior and Recognition Errors. Numerical in-
dexes of recognition performance are useful but do not explicitly convey
the similarity structure of the underlying feature space. A more qualitative
but extremely informative representation of system performance lies in the
sequence of images in order of increasing distance from a test view. Records
of this kind are shown in Figure 9 for several recognition trials. In each, a
test view is shown at the far left highlighted in red (gray), and the ordered
set of nearest neighbors is shown to the right. When a test view’s nearest
neighbor (second image from left) was not the correct match, the trial was
classified as a recognition error in Table 1.

In Figure 9A, generalization behavior can be seen when only color chan-
nels were used for recognition, illustrating the limits of a simple “color
histogramming” system. Errors of this kind occurred for objects with very
similar color content and were caused by changes in lighting conditions that
tipped the balance in favor of an incorrect object match.

In Figure 9B, generalization behavior can be seen when only shape-
related channels were used for recognition. Thus, as shown in row 1, a
view of a book is judged most similar to a series of other books (or the bot-
tom of a rectangular cardboard box)—each a view of a rectangular object
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C

Color
and

Shape

B

Shape Only

A

Color Only

Figure 9: Generalization and errors. In each row, a novel test view is shown at
the left (outlined in red). The sequence of best matching training views (one per
object) is shown to the right, in order of decreasing similarity. (A) Examples of
color generalization and errors (i.e., excluding shape-related features). (B) Ex-
amples of shape and texture generalization and errors, excluding color features.
(C) Examples of generalization and errors using all 102 color- and shape-related
channels.
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with high-frequency surface markings. A similar sequence can be seen in
subsequent rows for (2) a series of cans, each a right cylinder with detailed
surface markings, (3) a series of smooth, not-quite-round objects, (4) a series
of photographs of complex scenes, and (5) a series of dinosaurs (followed
by a teddy bear). In certain cases, SEEMORE’s shape-related similarity metric
was more difficult to interpret visually or verbalize (last two rows), or was
substantially different from that of a human observer.

When all 102 color and shape-related channels were used for recognition,
the few remaining errors occurred among views of objects that shared com-
mon shape and color features (see Figure 9C). These errors plainly illustrate
the limitations of SEEMORE’s visual discrimination power, exemplified by
chronic confusion among the Coke can, rubber cement can, and a Camp-
bell’s soup can. The confusion among these three similarly proportioned
right cylinders with red and white surface markings accounted for 3 of the
20 errors for the intact test set. An additional 3 errors were explained by
confusion between two similar photographs.

4 Discussion

4.1 Recognition Performance and Generalization Behavior. As can be
seen in Table 1, color alone is a remarkably powerful cue for object recogni-
tion, even in the total absence of shape information. This result is consistent
with the results of Swain and Ballard (1991), who successfully recognized
objects using color histograms alone and first drew the tentative analogy
between histogram bins and neural receptive fields. However, when the
color signatures of objects mimic each other and lead to recognition errors,
the errors are generally “inexcusable” to a human observer (see Figure 9A).

Thus, despite the utility of color for identification of specific instances
of objects, the preeminence of shape information in object vision is clear,
both for the definition of object categories (Rosch, Mervis, Gray, Johnson, &
Boyes-Braem, 1976) and in the process of rapid object naming (Biederman &
Ju, 1988). In this context, several aspects of SEEMORE’s shape representations
deserve closer examination.

First, the ecology of natural object vision gives rise to an apparent contra-
diction: Generalization in shape space must in some cases permit an object
whose global shape has been grossly perturbed to be matched to itself, such
as the various tangled forms of a telephone cord, but quasi-rigid basic-level
shape categories (e.g., chair, shoe, tree) must be preserved as well and dis-
tinguished from each other.

A partial resolution to this conundrum lies in the observation that lo-
cally computed shape statistics are in large part preserved under the global
shape deformations that nonrigid common objects (e.g., scarf, bike chain)
typically undergo. A feature-space representation with an emphasis on lo-
cally derived shape channels will therefore exhibit a significant degree of
invariance to global nonrigid shape deformations. The principal sources
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of change to the local image-plane shape statistics under nonrigid shape
deformations include (1) actual bending, rending, or warping of the object
surfaces; (2) visual foreshortening as object surfaces change orientation in
depth; (3) the addition and subtraction of object features that move in and
out of self-occlusion; and (4) the addition and subtraction of spurious lo-
cal shape statistics across accidental self-occluding boundaries. (Each of the
latter three categories of feature changes applies to rigid objects as well.)
The representational challenge, then, is to accumulate a sufficiently rich set
of local shape statistics, which individually “tolerate” some degree of bend-
ing, warping, and foreshortening (categories 1 and 2) so that as a group they
overwhelm in importance the feature-space excursions due to “capricious”
feature changes (categories 3 and 4). The situation for rigid objects is some-
what less problematic, in that shape statistics are stable over longer spatial
scales, and the problems associated with self-occlusion are generally less
severe.

The definition of shape similarity embodied in the present approach is
that two objects are similar if they contain similar profiles (histograms) of
their shape measures, which emphasize locality. One way of understanding
the emergence of global shape categories, then, such as “book,” “can,” and
“dinosaur,” is to view each as a set of instances of a single canonical object
whose local shape statistics remain quasi-stable as it is warped into vari-
ous global forms. In many cases, particularly within rigid object categories,
exemplars may share longer-range shape statistics as well.

It is useful to consider one further aspect of SEEMORE’s shape represen-
tation, pertaining to an apparent mismatch between the simplicity of the
shape-related feature channels and the complexity of the shape categories
that can emerge from them. Specifically, the order of binding of spatial
relations within SEEMORE’s shape channels is relatively low, consisting of
single simple open or closed curves, or conjunctions of two oriented con-
tours or Gabor patches. The fact that shape categories, such as “photographs
of rooms” or “smooth, lumpy objects,” cluster together in a feature space
of such low binding order would therefore at first seem surprising. This
phenomenon relates closely to the notion of “wickelfeatures” (Wickelgren,
1969; see also Rumelhart & McClelland, 1986, Chap. 18), where features that
bind spatial information only locally—before being globally pooled—are
nonetheless able to represent global patterns (words) with little or no resid-
ual ambiguity. For example, features sensitive to individual letters—but
not their positions—are not sufficient to distinguish words such as ngtcn-
rooiie and recognition. In contrast, features sensitive to letter pairs, analogous
to SEEMORE’s shape features, are typically sufficient to eliminate represen-
tational ambiguity (i.e., multiple inverse images), even in the absence of
relative positional information among the detected pairs. Thus, not only
does no other English word contain the same set of adjacent letter pairs
as recognition (co, ec, gn, io, it, ni, og, on, re, ti), but no other possible word
contains the same letter pairs (conjecture without proof!). One mechanism
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underlying this phenomenon is that the overlapping subcomponents of the
various features provide a form of implicit glue or binding that probabilis-
tically constrains the spatial relations between features, even though these
are not given explicitly within the representation. Thus the e in ec is likely
to be the same c as in re, producing a high a posteriori probability for the
compound rec. It is important to recall, however, that in direct opposition
to the pressure for precise representation of shape is the pressure to gen-
eralize across different shapes within the same shape category or between
views of the same object in different configurations. One strategy for coping
with this trade-off may be to maintain separate representations at a range
of specificities, coupled with a source of expertise to choose between them.

4.2 Rationale for Choice of Feature Channels. Following two main
guidelines, SEEMORE’s feature channels were designed as abstractions of
known feature types seen in the ventral stream of the primate visual sys-
tem and to represent information in images that is known to be impor-
tant for object perception. The level of abstraction was roughly as follows:
color-sensitive cells, texture-sensitive cells, cells responding to contour con-
junctions, cells distinguishing curved from straight, and so forth. Within
these general design guidelines, the specific selectivities and spatial invari-
ances that defined SEEMORE’s feature channels were largely shaped by two
additional forces: (1) the contents of the object database, which implicitly
rendered certain image cues more salient than others for purposes of clas-
sification, and (2) the relatively severe, monolithic nature of the recognition
task, which entailed nearly complete viewpoint uncertainty from trial to
trial.

Both of these influences make it likely that the details of SEEMORE’s fea-
ture channels differ from those of any real animal, whose image statistics
inevitably differ from those contained in SEEMORE’s database, and for whom
very different viewpoint assumptions, requiring different degrees of invari-
ance, hold in different behavioral contexts. As such, SEEMORE’s “neurophys-
iology” (feature channel responses) and “psychophysics” (recognition per-
formance and patterns of generalization) do not yet provide a detailed or
comprehensive model for the neurophysiological or psychophysical record
for any particular animal species. Indeed, the fitting of existing empirical
data along these lines has not been a goal of this work so far. On the other
hand, SEEMORE’s representations fall easily within the family of receptive-
field-based representations seen in biological visual systems and, under
many of the same challenges faced by “real” visual systems, have exhibited
levels of recognition performance and patterns of generalization that seem
surprising given the simplicity of the underlying computations. Given that
the scale of visual hardware in the ventral stream of the primate visual sys-
tem devoted to object recognition likely outstrips SEEMORE’s 102 feature
channels by multiple orders of magnitude, it seems a reasonable possibility
that the gap between the performance of a visual “simpleton” like SEEMORE
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and his much more gifted cousins in the animal kingdom is largely a matter
of scale.

In contrast to the engineering-driven approach adopted here, features
could have in principle been learned. Unsupervised learning approaches
have been used to discover statistical structure in natural images that is
strikingly close to the structure of simple cell-receptive fields in the mam-
malian visual system (Olshausen & Field, 1996). In the context of recogni-
tion, however, the problem of feature learning is more difficult in that statis-
tical structure present in an ensemble of images may or may not be useful.
Utility of image features depends on the specific classification problem that
the animal faces, which can change from moment to moment; consider the
processing of faces for identity versus age versus gender versus emotional
state, and so forth. The discovery of useful structure is thus a problem requir-
ing task-dependent supervision and requiring potentially large quantities
of labeled data. If the features needed for recognition are highly descrip-
tive, as needed in difficult recognition domains, then the search spaces for
either unsupervised or supervised approaches to feature learning are huge.
High representational biases could perhaps make such approaches more
tractable.

4.3 Limitations and Extensions. The presegmentation of objects in the
test sets used here is a simplifying assumption that is clearly invalid in
the real world. The advantage of the assumption from a methodological
perspective is that the object similarity structure induced by the feature
dimensions can be studied independent of the problem of segmenting or
indexing objects embedded in complex scenes. Thus, a representation that
does not permit good discrimination among a large number of objects over
a range of 3D viewpoints and internal configurations and does not impose
appropriate category structure among objects need not be considered fur-
ther as a component of a system that deals with objects embedded within
scenes.

The cluttered test condition (see Figure 3C) was designed to assay explic-
itly the sensitivity of SEEMORE’s visual representations to additive pattern
noise. While the figures in Table 1 show a seven-fold increase in error rate
for cluttered test images relative to the intact condition (21 percent versus
3 percent), these figures must be interpreted with care. First, as for the case
of intact images, approximately half (44 percent) of the “errors” in the clut-
tered case were second-best matches from a database of 100 objects and so
do not represent total recognition failure. Moreover, the act of cluttering
(or occluding or color shifting) a test image can introduce legitimate acci-
dental similarities between the modified test view and a view of another
(i.e., “incorrect”) object. Since SEEMORE is entirely unsuspecting of these
manipulations and is asked simply to compare incoming views to familiar
views at face value, some of the committed errors may be excusable, to the
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extent that the degraded object view does look most similar to a view of an
incorrect object to the eye of a human observer.

When pattern clutter is made more severe than that illustrated in Fig-
ure 3C, however, recognition performance suffers dramatically. One of the
main reasons for this is that SEEMORE’s feature channels are currently far
from sparse in their activity profiles across images; most feature channels are
activated to some degree by most object views. Under these circumstances,
the representations of multiple objects in the visual field additively collide
within the same feature channels, making separate recognition difficult or
impossible.

Two kinds of remedies for this problem have been suggested by biology
and prior work. The first is crude image segmentation based on a mov-
able fovea or other focal attention system (Koch & Ullman, 1985; Niebur
& Koch, 1994). This type of strategy typically minimizes, but cannot elim-
inate, the additive visual noise induced by extraneous objects outside the
focus of attention. The second, more potent remedy is the leap to sparse,
very-high-dimensional space, whose mathematical advantages for vision
and recognition have been discussed at length elsewhere (Kanerva, 1988;
Califano & Mohan, 1994). For example, in a domain of 2D line drawings,
Califano and Mohan (1994) have demonstrated position, orientation, and
scale-invariant recognition in multiple-object scenes with no prior segmen-
tation, using on the order of 106 highly descriptive contour-based features
(based on conjunctions of triplets of contour segments). Intuitively, an object
is recognized when a sufficient number of sufficiently distinctive features
“vote” for the presence of a particular object, regardless of whether other
objects also get votes. The leap into high-dimensional feature space is easily
arranged combinatorially, by conjoining existing (or other) low-order fea-
tures into compound features of higher order. The issue of feature locality
remains crucial, however. If the desired combinatorial explosion is achieved
by conjoining elemental shape tokens over relatively long distances in the
image, the resulting shape-based similarity metric can permit extremely
fine shape distinctions but may lead to poor generalization under nonrigid
shape deformation and partial occlusion. This approach is most relevant
in feature-poor images, in which the variety of local token configurations
is limited. In feature-dense images, such as natural images, the combinato-
rial explosion can be achieved while maintaining locality within elemental
features configurations, thus preserving the constellation of desirable rep-
resentational properties that locality confers.

One means of effectively increasing the richness of localized feature con-
figurations is to include elemental filters simultaneously sensitive to mul-
tiple visual cues, such as contour, color, shading, and texture cues. Inter-
estingly, the preferred responses of pattern-selective cells in the primate IT
cortex frequently involve explicit binding of contour shapes with particu-
lar colors and/or textures (Kobatake & Tanaka, 1994). In this context, we
may interpret these data as evidence of an implicit neural strategy whose
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goal is to achieve sparse high dimensionality in order to simplify object
indexing in cluttered scenes, while retaining locality, in order to facilitate
viewpoint-, configuration-, and occlusion-insensitive shape-based general-
ization. In continuing work, we are pursuing this course.
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