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Abstract

In this paper, we introduce a novel set of features for robust object recognition, which exhibits outstanding
performances on a variety of object categories while being capable of learning from only a few training
examples. Each element of this set is a complex feature obtained by combining position- and scale-tolerant
edge-detectors over neighboring positions and multiple orientations.

Our system – motivated by a quantitative model of visual cortex – outperforms state-of-the-art systems on
a variety of object image datasets from different groups. We also show that our system is able to learn from
very few examples with no prior category knowledge. The success of the approach is also a suggestive
plausibility proof for a class of feed-forward models of object recognition in cortex. Finally, we conjecture
the existence of a universal overcomplete dictionary of features that could handle the recognition of all
object categories.
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1 Introduction

Most state-of-the-art object recognition systems appear
to be hand-crafted and heuristically optimized for one
object category, i.e., faces [1–3], cars [2] or pedestri-
ans [4]. Typically these systems require a large number
of segmented training examples. This is in sharp con-
trast with primates’ ability to learn to categorize objects
from only very few unsegmented examples.

Recently, systems have been presented that can learn
to recognize many objects (one at a time) using an un-
segmented training set [5, 6]. These methods recog-
nize highly informative object components and their
spatial relations called constellations. Not only did
those methods achieve good performance but were also
shown to work with a very small training set contain-
ing few positive examples [6]. Yet another striking dif-
ference between these recent systems and the state-of-
the-art single-object-recognition systems (e.g., MERL’s
AdaBoost-based face and pedestrian detection systems,
or MobileEye’s SVM-based car detection system) is that
they use generative (Bayesian) algorithms.

In this work we present a system that is simpler than
constellation models [5, 6]: it uses discriminative meth-
ods and does not make use of any local object geometry.
Yet it is able to learn from very few examples and to per-
form significantly better than all other systems we have
tested. Our system first computes a set of biologically-
inspired C2 features learned from the positive training
set. We then run a standard classifier on the vector of
features obtained from the input image. We report re-
sults using both linear SVM and gentleBoost. Since the
source codes are readily available, our results should be
easy to reproduce and extend.

Other existing features. Hierarchical approaches to
generic object recognition have become increasingly
popular over the years. They have been shown to out-
perform non-hierarchical single template (holistic) ob-
ject recognition approaches on a variety of object recog-
nition tasks (e.g., face-detection [7]). Recognition is usu-
ally done in two steps: target features (also called com-
ponents [4, 7], parts [8] or fragments [9]) are first com-
puted and then passed to a combination classifier for
final analysis. Constellation models using generative
methods have been proposed in [5, 6, 8]. A robust face-
detection system was built with a two-layer SVM sys-
tem in [7] and variants of boosting algorithms were pre-
sented for fast face-detection [3] and multi-class [10] ob-
ject recognition approaches.

One limitation of those template-matching-based fea-
tures is that they do not capture adequately variations
in the object appearance: they are very selective for a
target shape but lack invariance with respect to object
transformations. At the other extreme, histogram-based
descriptors [11, 12] have been shown to be very robust

with respect to object transformations. The SIFT features
[11], for instance, have been shown to excel in the re-
detection of a previously seen object under new image
transformations.

However, as we confirmed experimentally (see sec-
tion 4), with such degree of invariance, it is very un-
likely that those features could perform well on a
generic object recognition task. We here propose a new
set of features that exhibit just the right trade-off be-
tween invariance and selectivity. They are much more
flexible than components [4] or fragments [9] and more
selective than local descriptors. Though they are not
strictly invariant to rotation, invariance to rotation can
be introduced via the training set (e.g., by introducing
rotated versions of the original input).

Biological visual systems as guides. Because humans
and primates outperform in almost any measure the
best machine vision systems, building a system that em-
ulates object recognition in cortex has always been an
attractive idea. However, for the most part, the use of
visual neuroscience in computer vision has been limited
to a justification of Gabor filters. No real attention has
been given to biologically plausible features of higher
complexity. While mainstream computer vision has al-
ways been inspired and challenged by human vision, it
seems to never have advanced past the very first stage
of processing in the simple cells of V 1. Models of bi-
ological vision [13–16] have not been extended to deal
with real-world object recognition tasks and tested on
them.

The standard model of visual cortex. Our system fol-
lows the standard model of object recognition in primate
cortex [17]. The model itself attempts to summarize in a
quantitative way what most visual neuroscientists gen-
erally agree on: the first few hundred milliseconds of
visual processing in primate cortex follows a mostly
feed-forward hierarchy. At each stage, the receptive
field of the neuron (i.e., the part of the visual field that
could potentially elicit a neuron’s response) tends to get
larger along with the complexity of its preferred stimuli
(i.e., the set of stimuli that are susceptible to elicit a neu-
ron’s response).

In its simplest form, the standard model consists of
four layers of computational units where simple S units
alternate with complex C units. The S units combine
their inputs with Gaussian-like tuning to increase ob-
ject selectivity. The C units pool their inputs through a
maximum operation, thereby introducing invariance to
scale and translation. The standard model has been able
to duplicate quantitively the generalization properties
exhibited by neurons in inferotemporal monkey cor-
tex (the so-called view-tuned units) that remain highly
selective for particular objects (a face, a hand, a toilet
brush) while being invariant to range of scales and po-
sitions.
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The standard model in its simplest version [15] used
a very simple static dictionary of features. It was sug-
gested that features from the third and higher layer in
the model should instead be learned from visual expe-
rience. We have extended the standard model by show-
ing how to learn a vocabulary of visual features from
images and applying it to the recognition of real-world
object categories.

2 The C2 features

It is important to stress that biology imposes strong con-
straints on our system architecture: consistent with the
standard view in neuroscience, our architecture is feed-
forward and does not involve image scanning over all
positions and sizes, the standard approach in computer
vision. It also limits the basic operations that can be per-
formed by individual units.

Our system is summarized in Fig. 1: the first two lay-
ers correspond to primate primary visual cortex, V1,
i.e., the first visual cortical stage, which contains sim-
ple (S1) and complex (C1) cells [18]. The S1 responses
are obtained by applying to the input image a battery of
Gabor filters, which can be described by the following
equation:G(x; y) = exp�� (X2 + 
2Y 2)2�2 �� cos�2�� X�;
where X = x cos � + y sin � and Y = �x sin � + y cos �.

We adjusted the four filters parameters, i.e., orienta-
tion �, aspect ratio 
, effective width �, and wavelength�, so that S1 units tuning profiles match those of V1
parafoveal simple cells. This was done by first sampling
the space of the parameters and then generating a large
number of filters. We applied those filters to stimuli
commonly used to assess V1 neurons’ tuning proper-
ties [18] (i.e., gratings, bars and edges). After removing
filters that were incompatible with biological cells [18],
we were left with a final set of 16 filters at 4 orientations
(see table 1).

The next stage – C1 – corresponds to complex cells
which show some tolerance to shift and size: complex
cells tend to have larger receptive fields (twice as large
as simple cells), respond to oriented bars or edges any-
where within their receptive field [18] (shift invariance)
and tend to be more broadly tuned than simple cells [18]
(scale invariance). Modifying the original Hubel &
Wiesel proposal for building complex cells from sim-
ple cells through pooling, Riesenhuber & Poggio pro-
posed a max-like pooling operation for building posi-
tion and scale tolerant C1 units. In the meantime, ex-
perimental evidence in favor of the max operation has
appeared [19, 20]. Again, parameters governing this
pooling operation were set so that C1 units match com-
plex cells’ tuning properties as measured experimen-
tally (see table 1).

Given an input image, perform the following steps:

S1: Apply a battery of Gabor filters to the input im-
age. The filters come in 4 orientations � and 16 scaless (see table 1). Obtain 16� 4 = 64 maps (S1)s� that are
are arranged in 8 bands (e.g., band 1 contains filters
outputs of size 7 and 9, in all four orientations).

C1: For each band, we take the max over scales and
positions: each band member is sub-sampled by tak-
ing the max over a grid with cells of size N� first and
the max between the two members second, e.g., for
band 1, a spatial max is taken over an 8 � 8 grid first
and then across the two scales (size 7 and 9).

Note: We do not take a max over different orienta-
tions, hence, each band (C1)� contains 4 orientation
maps.

During training Only: Extract K patchesPi=1;:::K of various sizes ni � ni and all four ori-
entations (thus containing ni � ni � 4 elements)
from the (C1)� maps from all training images.

S2: For image patchesX at all positions from C1 im-
age (C1)�, compute: Y = exp(�
jjX �Pijj2) for each
band and each Pi independently.
Obtain the S2 maps (S2)�i .

C2: Compute the max over all positions and scales
for each patch Pi and obtain shift and scale invariant
C2 features (C2)i , for i = 1 : : :K.

Figure 1: Computing the C2 features.

Figure 2: How scale and position tolerance is gained at the C1
level: Each C1 unit receives inputs from S1 units at the same
orientation (e.g., 0o) arranged in bands. For each orientation,
a band � contains S1 units in two different sizes and various
positions (grid cell of size N� � N�). From each grid cell
(see left side) we obtain one measurement by taking the max-
imum over all positions: this allow the C1 unit to respond to
an horizontal bar anywhere within the grid, thus providing
a translation-tolerant representation. Similarly, taking a max
over the two sizes (see right side), enables the C1 unit to be
more tolerant to changes in scale.
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Table 1: Summary of parameters used in our implementation (see also Fig 1 and accompanying text).

Band � 1 2 3 4 5 6 7 8

filters sizes s 7 & 9 11 & 13 15 & 17 19 & 21 23 & 25 27 & 29 31 & 33 35 & 37

effective width � 2.8 & 3.6 4.5 & 5.4 6.3 & 7.3 8.2 & 9.2 10.2 & 11.3 12.3 & 13.4 14.6 & 15.8 17.0 & 18.2

wavelength � 3.5 & 4.6 5.6 & 6.8 7.9 & 9.1 10.3 & 11.5 12.7 & 14.1 15.4 & 16.8 18.2 & 19.7 21.2 & 22.8

grid size N� 8 10 12 14 16 18 20 22

orientation � 0; �4 ; �2 ; 3�4
patch sizes ni 4� 4; 8 � 8; 12� 12; 16� 16 (�4 orientations)

Fig. 2 illustrates how pooling from S1 to C1 is done.
For instance, consider the first band: � = 1. For each
orientation, it contains two S1 maps: the one obtained
using a filter of size 7, and the one obtained using a
filter of size 9. Note that both of these S1 maps have
the same dimensions. In order to obtain the C1 re-
sponses, these maps are sub-sampled using a grid cell
of size N� � N� = 8 � 8. From each grid cell we ob-
tain one measurement by taking the maximum of all 64
elements. As a last stage we take a max over the two
scales, by considering for each cell the maximum value
from the two maps. This process is done for each of the
four orientations and each scale band independently.

In our new version of the standard model the subsequent
S2 stage is where learning occurs. A large pool of patches
of various sizes and at random positions are extracted
from a target set of images at the level of the C1 layer
for all orientations, i.e., a patch P of size n� n containsn � n � 4 elements. The training process ends by set-
ting each of those patches as prototypes or centers of the
S2 units (at each position and scale) which behave as ra-
dial basis function (RBF) units during recognition. This
is consistent with well-known neurons’ response prop-
erties in primate inferotemporal cortex [21] and seems
to be the key property for learning to generalize in the
visual and motor systems ??. Each S2 unit response de-
pends in a Gaussian-like way on the Euclidean distance
between a new input and the stored prototype.

An important question for both neuroscience and
computer vision regards the choice of the unlabeled tar-
get set from which to learn – in an unsupervised way –
this vocabulary of visual features. In the remainder of
this paper, features are learned from the positive train-
ing set for each object, but the reader can refer to sec-
tion 6 for a discussion on how features can be learned
from natural images.

Our final set of shift and scale invariant C2 responses
is computed by taking a global max over all scales and
positions for each S2 type at each position on the S2 lat-
tice. This results in as many C2 features as patches we
extracted during the learning stage. Finally, in the com-
puter system described here, the C2 responses to a new
input image are passed to a classifier for final analysis�.

3 Experimental Setup

To demonstrate the quality of the C2 features, we
compared their performances – when used as in-
puts to a classifier – with other systems on a vari-
ety of databases. Datasets that were available online
at www.vision.caltech.edu include five (Caltech)
databases (i.e., frontal-face, motorcycle, rear-car and air-
plane datasets from [5] and a leaf dataset from [8]) and
a 101-object database from [6]. We also considered two
more challenging datasets: a near-frontal (�30� ) face
dataset from [7] provided by Heisele et al. and a new
multi-view car dataset that we collected. Fig. 4 shows
some sample image patterns taken from the car and the
face dataset.

For the Caltech datasets, positive training and test
sets were generated using the splits provided by Fergus
et al. . The negative training and test sets were randomly
generated from the same background images as in [5].
All results we report for the 101-object category were
generated with 10 random splits each using 50 train-
ing and 50 test negative examples from the same back-
ground image category as in [6]. For testing, we also
used 50 positive test examples and experimented with
different training set sizes (1, 3, 15, 30). All splits for
the near-frontal face database were identical to the ones
used in [7].

The face dataset contains about 6,900 positive and
13,700 negative images for training and 427 positive and
5,000 negative images for testing. The car dataset con-
tains 4,000 positive and 1,600 negative training exam-
ples and 1,700 test examples (both positive and nega-
tive). Although benchmark algorithms were trained on
the full sets and the results reported accordingly, our
system only used a subset of the training sets (500 ex-
amples of each class only).�While it would be straightforward to match our final classifier with

prefrontal (PFC) cortex and C2 units with anterior inferotemporal
(AIT) cortex [15, 22], it is more difficult to commit to a brain area
for S2 units. Considering their size and complexity, they could be
located in V4 and/or posterior inferotemporal (PIT) cortex. This
reflects the lack of a precise characterization for neurons in inter-
mediate brain areas, i.e., between primary visual cortex (S1 and C1
layers) and AIT (C2 layer).
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Figure 3: Examples of learned features (first 5 features re-
turned by gentleBoost for each category). Each ellipse charac-
terizes a C1 afferent at matching orientation, while color en-
codes for response strength.

It is important to point out that those two datasets
are challenging. The face patterns used for testing are
a subset of the CMU PIE database which contains a
large variety of faces under extreme illumination con-
ditions (see [7]). The test non-face patterns were se-
lected by a low-resolution LDA classifier as the most
similar to faces (the LDA classifier was trained on an
independent 19 � 19 low-resolution training set). The
car database was created by taking street scene pic-
tures in the Boston area. Numerous vehicles (includ-
ing SUVs, trucks, buses, etc ) were manually labeled
from those images to form a positive test set. Random
image patterns at various scales that were not labeled
as vehicles were extracted and used as a negative test
set. For benchmarking this dataset, we implemented a
fragment-based gentleBoost algorithm as in [10], as well
as a gray-value single-template linear SVM.

As a preprocessing step to our system, we normal-
ized images in size: all images from the Caltech web
site were rescaled to be 140 pixels in height (width was
rescaled accordingly so that the image aspect ratio was
preserved) and converted to gray values. Images from
the face database [7] were all 70� 70 pixels and images
from the car database were scaled down to 120 � 120
pixels.

In the remainder of this paper, to make past and fu-
ture comparisons with other systems easier, we report
two accuracy measures for our system: the Receiver
Operator Characteristic area (Area in Fig. 5) that corre-
sponds to the area under the curve and the error rate
at equilibrium point (Eq pt in Fig. 5), i.e., when the false
positive rate equals the miss rate, since both measures
are reported in the literature equally frequently.

Figure 4: Examples taken from our difficult multi-view car
dataset and the difficult face datasets used in [7].

4 Results

Figure 5 contains a summary of the performance ex-
hibited by the C2 features used in conjunction with
linear SVM (C2 + (linear) SVM) and gentleBoost [3]
(C2 + gentleBoost) for various datasets, along with
published results from other systems (Benchmark algo-
rithms). Results obtained with the C2 features are con-
sistently higher than those previously reported on all
the datasets we tested: the leaf database [8], rear-car,
frontal-face, motorcycle and airplane datasets [5], as
well as two more challenging datasets, that is, the near-
frontal (�30� rotation) face dataset [7] and a newly in-
troduced multi-view car database.

As Fig. 6 (left) shows, after a critical number of C2 fea-
tures (about 100), performances do not depend strongly
on the number of features. For this experiment we first
created a set of 10; 000 features total and randomly se-
lected subsets of various sizes. The results shown are
the average of 10 independent runs. As evident, per-
formance could still be improved when allowing more
features (e.g., the whole set of 10,000), but reasonable
performance can be obtained even with 50 features.

Our system seems to outperform the component-
based system presented in [7] using a hierarchy of
SVMs on the difficult face database. It also seems to
outperform a system similar to [10] based on Ullman’s
features [9] and gentleBoost on the difficult car database
(though it was trained using a much smaller training
set). For illustration, we show on Fig. 6 (right), the ROC
curves for both systems (C2-based and fragment-based
with gentleBoost) and a single-template linear SVM.

Fig. 7 and 8 summarize the results we obtained on
the 101-object database. For each object category, we
generated positive training sets of sizes 1, 3, 6, 15 and
30 as in [6] (10 random splits for each). The nega-
tive training sets, and the test sets (both positive and
negative) all contained 50 examples randomly selected.
Fig. 7 (left) shows the C2 features-based system’s per-
formances (with gentleBoost) on the same datasets as
the ones used by Li et al. for illustration.
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Benchmark algorithms C2 + gentleBoost C2 + (linear) SVM

Datasets Ref. Area Eq pt Area Eq pt Area Eq pt

Leaves (Caltech) [8] NA 84.0 99.4 97.0 99.5 95.9

Cars (Caltech) [5] NA 84.8 100.0 99.7 100.0 99.8

Faces (Caltech) [5] NA 96.8 99.8 98.2 99.8 98.1

Airplanes (Caltech) [5] NA 94.0 99.6 96.7 98.8 94.9

Motorcycles (Caltech) [5] NA 95.0 99.8 98.0 99.7 97.4

Faces [7] 96.0 90.4 99.3 95.9 99.2 95.3

Cars (*) 83.3 75.4 98.8 95.1 97.7 93.3

Figure 5: Sample results obtained by classifying the C2 features (1,000) with both a linear SVM (C2 + (linear) SVM) and gentleBoost
(C2 + gentleBoost) and comparison with existing systems (Benchmark algorithms). We report both the ROC area (Area) and the error
rate at equilibrium point (Eq pt). (*) corresponds to a system we implemented that uses Ullman’s features [9] and gentleBoost as
in [10].
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(right) ROC curves obtained with the C2 features on the difficult car dataset for comparison with a component-based (gentleBoost)
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Our gentleBoost system achieves error rates similar
to the ones reported in [6], with very few training ex-
amples (from 3 to 6) and tends to do better with more
examples. It seems that SVM avoids overfitting even
for one example – see Fig. 7 (left) – and outperforms
gentleBoost for one-shot learning (learning from one ex-
ample). However, since SVM does not seem to be able
to select the relevant features, its performance is lower
than gentleBoost as the number of training examples in-
creases (see 15 and 30 examples). Fig. 8 shows the per-
formances of the gentleBoost and SVM classifiers used
with the C2 features over all categories and for various
training set sizes (each result is an average of 10 differ-
ent random splits). Each plot is a single histogram of all101 scores, obtained using a fixed number of training
examples, e.g., with 40 examples, the gentleBoost-based
system gets 95% correct for 42% of the object categories.

We also compared our C2 features to a system based
on Lowe’s SIFT features [11]. For this comparison, we
neglected all position information recovered by Lowe’s

algorithm. We selected 1000 random reference key-
points from the training set. Given a new image, we
measured the minimum distance between all its key-
points and the 1000 reference key-points, thus obtain-
ing a feature vector of size 1000. Note that Lowe rec-
ommends using the ratio of the distances between the
nearest and the second closest key-point as a similarity
measure. We found instead that the minimum distance
leads to better performances than the ratio.

On Fig. 9 (left) we compared the SIFT-based features
and the C2 features on various Caltech datasets (leaf,
motorcycle, airplane, car and face). The gain in perfor-
mance obtained by using the C2 features relative to the
SIFT-based features is obvious. This is true with gentle-
Boost – used for classification on Fig. 9 (left) – but we
also found very similar results with a linear SVM. Also,
as one can see in Fig. 9 (right), the C2 features perfor-
mances (error at equilibrium point) for each category
from the 101-object database is well above those of the
SIFT-based features for any number of training exam-
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Figure 10: (Left) Multiclass classification on 101-object database with linear SVM and (right) Object-specific vs. universal features
on the 101-object database.

ples. This difference was significant (paired t-test over
all training sizes, p = 10�78).

Fig. 3 shows examples of features we obtained after
training for motorcycle, face, airplane, starfish and yin-
yang images. This figure shows the five first features
selected by the gentleBoost algorithm. Recall that each
feature contains n�n�4 elements, where n is the num-
ber of S1 afferents or patch size and 4 corresponds to the
4 orientations. For visualization, we collapsed all ori-
entations onto a single map, i.e., each ellipse character-
izes a S1 afferent at matching orientation, while color
encodes for its response strength. One should keep in
mind that this simplified representation is inaccurate :
C1 units are translation and scale tolerant i.e., their pre-
ferred stimulus is not unique. For simplicity, we represent
an ellipse in the center of each unit but in practice its
exact location may vary. As one can see from Fig. 3, fea-
tures that were chosen by the boosting algorithm also
vary widely from one category to another (both in size
and shape).

Finally, we conducted initial experiments on the mul-
tiple class case. For this task we used the 101-object
dataset. We split each category into a training set of
size 15 or 30 and and a test set containing the rest of the
images. We used a multiple-class linear SVM to train
a classifier. The SVM applied the all-pairs method for
multiple labels classification, and was trained on 102 la-
bels (101 categories plus the background category). The
number of C2 features used in these experiment was
4075. The results we obtained, averaged over 10 rep-
etitions of the experiments, were 35% correct classifi-
cation rate when using 15 training examples per class,
and 42% correct classification rate when using 30 train-
ing examples. Fig. 10 shows the confusion matrix for
the 101-object categories.

5 Implications for Object Recognition in
Cortex

Our approach is biologically motivated and our system
belongs to a family of feed-forward models of object
recognition in cortex that have been shown to be able
to duplicate neurons’ tuning properties in several vi-
sual cortical areas. In particular, Riesenhuber & Pog-
gio showed that such a class of models accounts quan-
titatively for the tuning properties of view-tuned units
in inferotemporal cortex (IT) which respond to images
of the learned object more strongly than to distrac-
tor objects, despite significant changes in position and
size [22]. Riesenhuber & Poggio reported performance
of the model only on idealized stimuli such as paper-
clips on a uniform background [23] (no real-world im-
age degradation such as change in illumination, clut-
ter, etc ). The success of our extension of their origi-
nal model on a variety of real-world object databases
provides a compelling plausibility proof for this class
of feed-forward models.

A long-time goal for computer vision has always
been to build a system that achieves human-level recog-
nition performance. Until now, biology had not sug-
gested a good solution. In fact, the superiority of hu-
man performances over the best artificial recognition
systems has continuously lacked a satisfactory expla-
nation. The computer vision approaches had also di-
verged from biology: for instance, some of the best ex-
isting computer vision systems use geometrical infor-
mation about objects constitutive parts whereas biology
is unlikely to be able to use it - at least in the cortical
stream dedicated to shape processing and object recog-
nition. The system described in this paper may be the
first counter-example to this situation: it is based on a
model of object recognition in cortex [15], it respects
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10 best 10 worst

metronome 100.0 chair 73.0

inline skate 99.5 barrel 72.1

scissors 98.3 ibis 72.1

pagoda 98.1 octopus 71.6

trilobite 97.9 cup 71.3

faces 97.3 cannon 71.1

accordion 97.2 wheelchair 70.8

minaret 96.2 lamp 70.6

faces easy 95.7 flamingo 68.4

car side 95.7 ewer 62.9

Table 2: 10 best and 10 worst categories (Eq pt) from the
101-object database.

the properties of cortical processing (including the ab-
sence of geometrical information) while showing per-
formance at least comparable to the best computer vi-
sion systems.

We finally show results suggesting that it is possible
to perform robust object recognition from C2 features
learned from natural images. In Fig. 10, we compare the
performances of two sets of features on the 101-object
database: (1) a set of object-specific features that were
learned from the training set of the target object cate-
gory (20 features per training image); and (2) a univer-
sal set of 10; 000 features that were learned from a gen-
eral set of natural images (downloaded from the web).
While the object-specific set performs significantly better
with enough training examples (p = 3:7 � 10�7, paired
t-test for 30 training examples), the situation is reversed
for small training sets (p = 7:5 � 10�12, paired t-test for 1
training example).

This apparent superiority of the universal set over the
object-specific one for small training sets is somewhat
counter-intuitive and very interesting. First, the univer-
sal feature set is less prone to overfitting with few train-
ing examples (recall that both the features learning and
classifier training is performed on the same set in the
object-specific case). Second, the size of the universal set is
constant regardless of the number of training examples
(10,000), while the size of the object-specific set is much
smaller (20 times the number of training images).

We believe that this represents a relevant and intrigu-
ing result on its own - towards the holy grail of find-
ing the elusive universal dictionary of visual shapes. Our
results also suggest that it should be possible for bio-
logical organisms to acquire a basic vocabulary of fea-
tures early in development while refining it with more
specific features during adulthood. The latter point is
consistent with reports of plasticity in inferotemporal
cortex from adult monkey [22, 24] (our C2 features com-
plexity and sizes are consistent with neurons receptive
field in posterior IT [24]).

6 Discussion

In the present paper we described a new framework
for robust object recognition: our system first computes
a set of biologically-inspired scale- and translation-
invariant C2 features from a training set of images. We
then run a standard classifier on the vector of features
obtained from the input image. We showed that our ap-
proach exhibits outstanding performances on a variety
of image datasets.

A biologically-inspired state-of-the-art approach.
While significantly simpler than other state-of-the-art
systems, our approach nonetheless exhibits consis-
tently better results than all systems we have compared
it to. For instance, the systems described in [5, 6, 8]
involve the estimation of probability distributions;
[7] uses a hierarchy of SVM classifiers and requires
correspondences between positive training images (3D
head models).

We also showed that a relatively small number of fea-
tures (about 50) is sufficient to achieve reliable object
recognition. However, performances can be increased
significantly by adding more features. Interestingly, the
number of features needed to reach the plateau (about
5,000 features) is much larger than the number used by
current systems (on the order of 10-100 for [7, 9, 10] and
4-8 for constellation approaches [5, 6, 8]).

On the role of relative geometry for generic object
recognition. It is also important to point out that, con-
trary to recent trends — but consistent with neurophys-
iology constraints – we do not model local object ge-
ometry. The constellation approaches [5, 6, 8] rely on
a probabilistic shape model; in [7] the position of the
facial components is passed to a combination classifier
(along with their associated detection values); in [10]
object parts are searched only in their approximated ex-
pected position. We should emphasize that the absence
of shape information in our approach follows directly
the standard model; it was therefore guided by what we
know about properties of visual processing within the
sequence of visual areas comprising the ventral stream,
which is responsible for object recognition.

Use of prior vs. use of negative examples. In recent
years, generative models have gained popularity in ob-
ject recognition applications. In particular, it was re-
cently shown that generative models combined with
the use of prior category information could produce
systems able to learn from few examples [6]. Our sys-
tem does not exploit any prior, but instead uses a train-
ing set which contains negative examples. Negative
examples provide extremely useful information to our
classifier with little cost (negative examples are easy to
obtain). Note that in the tests reported here, we did not
tune any parameter to obtain optimal performance. In-
stead, we tuned the parameters to match what is known
about the primate visual system.
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The quest for universal features. We finally showed
preliminary results suggesting that it is possible to per-
form robust object recognition with a universal set of
C2 features learned from natural images (see section 5).
We plan on making this universal feature set avail-
able to the community on our web site soon. As those
features were learned from randomly selected images,
they might not all be useful for classification; we are
now studying which features, out of this large set, are
indeed informative.
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