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Abstract

We develop a novel technique for class-based matching of
object parts across large changes in viewing conditions.
Given a set of images of objects from a given class under
different viewing conditions, the algorithm identifies corre-
sponding regions depicting the same object part in different
images. The technique is based on using the equivalence
of corresponding features in different viewing conditions.
This equivalence-based matching scheme is not restricted
to planar components or affine transformations. As a re-
sult, it identifies corresponding parts more accurately and
under more general conditions than previous methods. The
scheme is general and works for a variety of natural object
classes. We demonstrate that using the proposed methods,
a dense set of accurate correspondences can be obtained.
Experimental comparisons to several known techniques are
presented. An application to the problem of invariant object
recognition is shown, and additional applications to wide-
baseline stereo are discussed.

1. Introduction

In this paper, we consider the problem of matching corre-
sponding parts of objects across large changes in viewing
conditions. The input to the algorithm is a set of images
of objects from a given class under different viewing con-
ditions. From this set, the algorithm automatically extracts
object parts, and matches corresponding parts in different
images. These parts can then be used for automatic image
interpretation in terms of objects and their parts, invariant
recognition and wide-baseline matching. An example task
is to obtain a gallery of face parts such as the eyes, nose,
or mouth from face images taken under markedly different
viewing directions and illumination, as illustrated in Figure
1.

The problem of generic feature matching has been con-

Figure 1: Illustration of the matching problem. Sample in-
put to the system includes images of the same face in sev-
eral viewing conditions (top row). Desired output includes
the images of face parts such as eye (middle row), mouth
(bottom row), etc., in all these conditions.

sidered in the past [1–4]. Existing schemes are not restricted
to a particular object class. However, they make strong as-
sumptions about the input data. For example, in [1, 5] the
availability of video sequences is assumed. Schemes de-
scribed in [2–4] can handle still images, but assume local
scene planarity. When these assumptions are violated, the
performance reduces to unacceptable level (see section 4).
As a result, the need exists for algorithms that are capable to
overcome these restrictions and match reliably non-planar
parts under large variations in viewing conditions.

In the scheme described below, we use class-based infor-
mation in order to obtain reliable part matching. The idea
is that in addition to the two images to be matched, exam-
ples of objects of the same general class in similar viewing
conditions will be used. We will show that this allows to
learn the effect of the transformation on the parts of objects
of a given class and consequently identify the images of the
same object part under much broader conditions than previ-
ous schemes.
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The motivation for studying class-based part matching
arises for several reasons. First, in several popular schemes
of object classification [6,7], indexing and retrieval [3], ob-
jects are represented by their constituent parts. The abil-
ity to identify the same object part under different viewing
conditions would enable these schemes to perform view-
invariant recognition [8], which is an important task in com-
puter vision. Second, the ability to reliably identify and lo-
calize object parts, in addition to the recognition of the en-
tire object, is of interest on its own right. Third, the problem
of feature matching is central to such tasks as tracking and
wide-baseline stereo. As discussed in section 6, the use of
class-based information for highly familiar objects, such as
faces, may improve current tracking and stereo techniques.

The remainder of this paper is organized as follows. In
the next section, we review some of the relevant previous
approaches to the problem of matching local object parts.
In section 3, we describe the proposed class-based match-
ing scheme. In section 4 the performance of the new scheme
is compared with several popular matching algorithms. In
section 5, an application to the problem of view-invariant
object recognition is shown. We conclude with some gen-
eral remarks in section 6.

2. Previous approaches to matching

Matching features across views requires predicting how the
change of viewing conditions will affect the feature’s ap-
pearance. In simple cases (e.g. when images are related
by pure translation) one may assume that the feature’s ap-
pearance remains constant and only its position changes.
This assumption, called ‘brightness constancy’, is used in
several well-known feature tracking and optical flow algo-
rithms [1, 9]. Under the brightness constancy assumption,
features can be matched using the minimal sum of squared
differences (min-SSD) criterion.

However, in most practical cases the variations of view-
ing conditions affect the feature’s appearance considerably.
The impact of viewing conditions is often more significant
than the impact of the feature’s identity [10].

One general approach to cope with this difficulty is to
approximate the transformation of the feature’s appearance
by some parametric model. Typically, affine or low-order
polynomial models of illumination and geometry are used
(e.g. [11]), but more complicated schemes [5, 12] have also
been proposed. If estimates of the parameters are known,
the features may be matched across transformation (e.g. by
warping). However, estimating the parameters is often a dif-
ficult task. Most schemes [5,12] handle it by using video se-
quences and updating the parameters for every frame. The
task of incremental updating is easier, because the differ-
ence in parameters between successive frames is small. The
drawback is the necessity to use video sequences, which are

not always available, and require additional effort to cap-
ture, store and manipulate. In addition, the approximation
provided by common parametric models [11] is only valid
for a limited range of transformations.

An approach that does not require an estimation of the
transformation parameters is to use invariant features. Many
popular approaches [2–4, 13] work with so-called affine in-
variants. The general idea is that the features extracted from
an image are normalized with respect to affine transforma-
tions. Therefore, features differing by an affine transforma-
tion have identical representation and can be matched di-
rectly, without the need to estimate the parameters of the
transformation. A significant drawback of this approach
is that affine approximation holds only for locally planar
scenes and affine illumination changes. In practice, many
natural objects (such as faces) are not planar. In addition, il-
lumination changes perturb image intensity in a highly non-
linear way due to factors such as specularities (highlights)
and cast shadows. Invariants more general than affine ex-
ist [14], but are usually sparse and therefore insufficient for
most tasks. An additional drawback of methods utilizing
invariants is the lack of control over the features. Since not
all image points are invariant, it is impossible to match a
particular point of interest; only the points chosen by the
algorithm as invariant can be used.

A scheme that can cope with complex intensity transfor-
mations was described in [15]. However, this technique can
only handle affine geometric distortions and requires a 3D
model for more complex transformations.

In [8], matching pairs of features were learned from
video sequences. A similar idea was described in [16],
where the average shape of each feature across the trans-
formation was used. However, these methods require ex-
amples of correct matches to be provided (in contrast to the
scheme proposed here).

3. Class-based matching by fragment
equivalence

In this section, we describe the proposed algorithm for
class-based matching. In section 3.1, the idea of utilizing
equivalence criterion for matching individual object parts is
presented. In section 3.2, we describe how the accuracy of
matching is improved by exploiting geometric constraints.
The final algorithm that combines the appearance and ge-
ometry is described in section 3.3.

3.1. Matching object parts
Before describing the part matching method, we first briefly
describe relevant aspects of a popular fragment-based ob-
ject representation scheme [6, 7] that is used by the cur-
rent method. In these schemes, objects from a general class
(such as cars or faces) are represented by their constituent
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parts. For example, parts for face images typically include
different types of eyes, mouths, etc. Image patches, or frag-
ments, are used to depict the appearance of each object part.
Fragments are extracted from example images in the learn-
ing stage. Each fragment is searched for in the images using
a similarity measure, typically the absolute value of normal-
ized cross-correlation, given by

������ � � �
�

�

�
�������� ��� ���� ��� ��� � �

����
� (1)

Here � ��� �� is the fragment, ���� �� is an image patch of
the same size as � , � is the number of pixels in the frag-
ment, �� � are the means and ��� �� are the standard de-
viations of the intensities of � and � . Image patches at all
relevant locations are compared with � , and location with
the highest correlation is selected. When the correlation ex-
ceeds a pre-determined threshold, the fragment is consid-
ered present, or active, in the image. An object is repre-
sented by the set of fragments that are present in it.

The simplest way to utilize this representation for part
matching between two images of the same object is to di-
rectly match a fragment from one image with the other im-
age, by normalized correlation. However, this method per-
forms poorly when significant variations in viewing condi-
tions are present [10].

To obtain a reliable match between the same object part
under different viewing conditions, consider two fragments,
� and � �, depicting the same object part 	 in different
viewing conditions � and � �. The key observation is that
the part 	 itself does not change during the transformation,
although its appearance changes from � to � �. Therefore,
the fragment � , when used with images taken under con-
ditions �, plays an equivalent role to that played by � � in
conditions � �. For example, if � is active in the image of
some object under conditions �, then � � will be active in
the image of the same object under conditions � �. In other
words, � and � � will be consistently detected in the images
of the same objects, � in conditions� and � � in conditions
� �.

Given an arbitrary pair � , � � of fragments, this obser-
vation may be used to test whether � matches � �. As dis-
cussed above, matching fragments will be consistent. Con-
versely, non-matching fragments will in general be signifi-
cantly less consistent. This is because non-matching frag-
ments represent different object parts. In general, different
object parts are not highly correlated in different images.
Therefore, presence of one fragment will not reliably pre-
dict presence of the other, i.e. the fragments will have a low
consistency.

More precisely, the consistency of two fragments � , � �

may be measured as follows. Assume that a set of images

�� � � � � 
� of � objects taken under conditions �, and a set
of images 
 �

�
� � � � � 
 �� of the same objects taken under con-

ditions � � are given. (These sets will be called ‘validation
database’.) For the fragment � , set �� � � if � is present
in 
� and �� � � otherwise. Combine these values into
an �-dimensional activation vector �. � is a binary vec-
tor with 1’s encoding the indices of the objects in which �

is present. Similarly, calculate the activation vector �� for
� � by ��

� � � if � � is present in 
 �� and ��

� � � other-
wise. Matching fragments will have similar activation vec-
tors. This similarity can be measured by normalized corre-
lation of the vectors � and ��, using one-dimensional ana-
logue of eq. (1). Since normalized correlation ranges from
�� to 1, the value

���� � �� �
��������� � �

�
(2)

can be used as the consistency measure. ���� � �� ranges
from 0 to 1, with 1 indicating perfect consistency and 0 in-
dicating complete inconsistency.

The proposed class-based matching algorithm can now
be described as follows. Given two images, 
 (called
‘source image’) and 
 � (called ‘target image’), of the same
object taken in conditions �, � �, the task is to find a dense
set of correspondences between 
 and 
 �. For every loca-
tion in 
 , consider a small image patch � (called ‘source
fragment’) at that location that depicts some object part 	
under �. In order to find the matching fragment � �, con-
sider all possible fragments in 
 � (called ‘candidate target
fragments’) and select the most consistent fragment � � as
the match. Examples of matches obtained by this algorithm
are shown in Figure 2 (bottom row).

3.2. Using fragments pyramids to improve ac-
curacy

The previous section explained how fragment consistency
is used to evaluate the likelihood of an individual match.
However, simply matching the two most consistent features
is not the optimal strategy, because factors such as image
noise and within-object redundancy may cause matching
errors (see Figure 2). A common strategy is therefore to
employ some geometric constraints between features to im-
prove the matching accuracy of individual features.

Many existing schemes assume some parametric model
(e.g. a homography) of the global scene transformation and
derive constraints from this assumption [2, 3, 13]. How-
ever, such an assumption is often too restrictive in practice,
and therefore more general geometric constraints are neces-
sary. The constraint incorporated in the equivalence-based
matching scheme is a simple proximity assumption. Intu-
itively, we assume that if two object parts are located close
to each other in one image, they are likely to remain close
in other images.

To impose the proximity constraint, we use a hierarchi-
cal representation of the proximity relations between ob-
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Figure 3: An object is covered by fragments of progres-
sively larger size, depicted by white rectangles. Smaller
fragments that fall inside larger ones are considered to be
their children, as indicated by gray lines. The resulting hi-
erarchical structure is called the fragments pyramid.

ject parts. In this representation, the image is covered by
progressively larger fragments, until a single fragment cov-
ers the entire image. A smaller fragment, whose central
point is inside the area covered by a larger fragment, is con-
sidered a child of the larger fragment in the hierarchy. In
order to ensure that each small fragment has exactly one
parent, the large fragments are selected to tile the image,
i.e. to cover the entire image area and be non-intersecting.
Since by construction the smallest fragments have no chil-
dren, the tiling requirement is not applicable at this level.
Therefore, fragments of the smallest size are created at ev-
ery image location. In this hierarchy, two fragments that are
spatially close, will usually have a common parent, while
two distant fragments are likely to have different parents.
In this manner, proximity will be represented by the hier-
archicy, as illustrated in Figure 3. The resulting structure
is called the fragments pyramid. Since proximity relations
are roughly preserved across the transformation of viewing
conditions, the hierarchical structure in the source and tar-
get images should be similar. Deviations from this com-
mon structure can therefore be used as indications of un-
likely matches. The next section describes how the frag-
ments pyramid is used to impose the proximity constraint,
and how it is combined with the consistency measure to pro-
duce the final matching.

3.3. Combining consistency and proximity
constraints

The final matching strategy combines the two factors de-
scribed so far, the likelihood of individual matches (mea-
sured by fragment consistency) and the similarity of geo-
metrical structure (measured by fragments pyramid). We

describe below how this combination is performed in a
probabilistic framework.

First, a fragments pyramid is constructed from the source
image. The process is started by creating fragments of cer-
tain initial size at every image location. The choice of the
initial size may affect the accuracy of the matching, as illus-
trated by the following example. Consider two fragments �
and � � of size one pixel each. Since a single-pixel frag-
ment can be detected in any image, every element of the
activation vectors of both � and � � will be equal to one.
The two fragments will then be entirely consistent regard-
less of whether they actually match. To avoid this problem,
fragmens should be of appropriate size so that they repre-
sent meaningful object parts. The optimal size is selected
automatically by testing fragments of several sizes at ev-
ery image location and selecting the fragment with maximal
mutual information, as suggested in [7].

The maximal size of the fragments thus created is then
found and increased by a certain factor . (In our exper-
iments, the best value found empirically was  � ���.)
Larger fragments that tile the source image are created, and
parent-child relationships are determined. The process of
increasing fragment size is repeated until a single fragment
covers the entire image. This fragment is considered the
root node of the hierarchy.

Next, candidate target fragments of all sizes used in the
source image are created in the target image. Note that the
fragment pyramid is constructed for the source image only.
Therefore, candidate target fragments are created at every
position in the target image, and the constraints of tiling or
mutual information are not enforced.

The problem we now face is to establish matches be-
tween fragments in the source and target images. Denote by
� the unknown vector of matches, where �� � � � if frag-
ment � matches � �. (The unprimed variables below refer
to source fragments and the primed variables refer to target
fragments.) Denote by � the set of observations, which in
our case include the consistency values ���� � �� for every
pair of fragments �� � �, with � taken from the source image
and � � from the target image. The commonly used maxi-
mum a posteriory (MAP) estimate of the vector of matches
is given by

�� � 	
��	
	

	 ���� �� (3)

where	 ���� � is the joint probability distribution of� and
� . As shown in [17], under reasonable assumptions (such
as conditional independence) 	 ���� � can be factored as

	 ���� � � 	 ������
�

	 ��� � ������� � �


��
�

	 ����� � ����� � ��� (4)

The symbol �� � � means that � matches � �, ���� denotes
the parent of the fragment � in the image pyramid, � �


 is
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some fragment from the target image of size similar to ����,
and � denotes the root node of the pyramid.

By Bayes formula,

	 ����� � ����� � �� � 	 ��� � ������ � ���
	 ����� � ���

	 ��� � ��
�

(5)
Since high consistency is an evidence of a match, it is rea-
sonable to assume that 	 ��� � ������ � ��� is proportional
to ���� � ��. Assuming also that

	 ����� � ���

	 ��� � ��
� ����� (6)

we arrive at the following estimate:

	 ����� � ����� � �� �
�

��

���� � ��� (7)

where �� is an appropriate normalization factor. In princi-
ple, the actual distribution 	 ����� � ��� could be estimated
from examples instead of using (6), but good performance
was obtained without doing so. Experiments with a variety
of other estimates showed that the algorithm is not sensitive
to the precise form of 	 ����� � ����� � ��.

	 ��� � ������� � �


� implements the proximity con-
straint, using the hierarchical structure. Assume that
����� � �


. By definition, � is a child of ����. Similar-
ity of the hierarchical structure requires � � to be a child
of � �


. Therefore, 	 ��� � ������� � �


� should be high if
the smaller fragment � � falls inside the larger fragment � �


,
and should decrease when � � becomes more distant from
� �


. The actual distribution 	 ��� � ������� � �


� could be
learned from examples. However, since no observable ex-
amples of correct matches are available in our setting, the
following estimate conforming to the qualitative require-
ments listed above was used:

	 ��� � ������� � �


� �
�

��

������� (8)

Here � is the distance from the center of � � to the closest
point of � �


, and �� is an appropriate normalization factor.
In our experiments, this estimate was sufficient to obtain
good performance. Experiments with a variety of other es-
timates showed that the algorithm is not sensitive to the pre-
cise form of 	 ��� � ������� � �


�.
The root node � in our setting represents the entire im-

age. Since the images to be matched are usually of similar
size, there is only one possible match for �. Therefore,
	 ������ was set to 1.

Given the decomposition (4) and the values of the fac-
tors (7), (8), the maximum a posteriori estimate of each
fragment’s best match can be calculated efficiently using a
standard Viterbi-like inference algorithm [17].

4. Experimental comparisons
In this section, we compare the accuracy of the proposed
fragment equivalence scheme to several well-known match-
ing schemes, namely, KLT [1], Black’s robust optical flow
[9], and affine-invariant features [3]. KLT implementation
available at [18], Black’s original implementation of robust
optical flow available at [19], and Mikolajczyk’s original
implementation of invariant features available at [20] were
used for the experiments.

KLT and robust optical flow were applied to each image
pair independently. For the affine invariants scheme, invari-
ant points for each image were calculated. Region matching
was then performed by selecting for each source point the
target point with the most similar descriptor. Similarity of
descriptors was measured by the Mahalanobis distance, us-
ing the covariance matrix estimated during training stage
from all the images in the database (a separate matrix was
used for each experiment below and each database). This
evaluation is identical to the published description of the
algorithm [3]. The current fragment equivalence scheme
was evaluated by using as validation database the entire im-
age set excluding the two images being matched. In addi-
tion, the accuracy of the proposed method with and without
using fragments pyramids was compared. This compari-
son demonstrated that the fragments pyramid indeed im-
proves the matching accuracy. In addition, it shows that
even without using pyramids, class-based knowledge sig-
nificantly improves the matching over the previous generic
matching schemes.

The data sets used for each of the experiments are de-
scribed below. The performance of the evaluated algorithms
is summarized in Table 1, and the complete histograms of
error distributions are shown in Figure 4.

Illumination data set – easy A subset of 30 frontal face
images from the PIE database [21] was used in this exper-
iment. Images were taken with normal room illumination.
In addition, in the source images a flash from the far right
direction was added, and in the target images a flash from
the far left. The images were low-pass filtered and down-
sampled to size ��� � ��� pixels. Examples are shown in
Figure 2 (top row).

Illumination data set – hard Images were similar to the
previous test, with room illumination off. As shown in Fig-
ure 2 (top row), the changes introduced by illumination vari-
ations are much more severe. In particular, illumination can
no longer be approximated by a local affine transformation
of intensities.

Pose data set A subset of 50 face images from the FERET
database [22] was used in this experiment. Frontal images
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Figure 2: Top row: sample images used for the experiments. Left: easy illumination data set. Middle: hard illumination data
set. Right: cars data set. (See sections 4, 5.) Bottom row: examples of matches obtained automatically by the algorithm.
Only a few matches are shown, the total number of matches was above 100 in each image. Note that object parts are matched
accurately despite significant changes in illumination (including cast shadows) and pose. The rightmost example shows an
incorrect match caused by within-object redundancy. We explain in section 3.2 how such errors are handled.

Algorithm Easy illumination Hard Illumination Pose
Affine invariants ��� �� ���� �� ��� ��

KLT ��� �� ��� �� ��� ��
Robust optical flow ��� � ��� � ���� ��

Equivalence, no pyramid ��� �� ��� �� ��� ��
Equivalence, with pyramid ���� � ��� �� ��� ����

Table 1: Average errors in matches � standard deviation, in pixels.
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Figure 4: Histograms of accuracy of matches. Horizontal axis: error (in pixels). Vertical axis: percentage of points with the
given error. Top row: easy illumination data set. Middle row: hard illumination data set. Bottom row: pose data set.
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were used as source, and half-profile images were used as
target. The images were of size ���� ��� pixels.

4.1. Summary
As seen from the results presented above, algorithms that
utilize variations of the brightness constancy assumption
(KLT and optical flow) perform relatively poorly in all
tasks. This is due to significant changes in appearance be-
tween the source and target images. In addition, both algo-
rithms assume small feature displacements between images
and are usually used with video sequences. Affine invari-
ants perform reasonably well in the easy illumination task
(as seen in Figure 4, about 30% of the matches are correct).
However, in the more difficult illumination task and in pose
task, the performance of affine invariants reduces to ran-
dom. This is due to the fact that image changes induced by
cast shadows and pose change cannot be well approximated
by local affine models of illumination and geometry. The
performance of the current fragment equivalence scheme
remains good in all tasks (above 70% correct matches, Fig-
ure 4), although the two latter tasks are more difficult for
this scheme as well. The results demonstrate that match-
ing across significant changes in viewing conditions can be
achieved by using the appropriate class-based information.

5. Application to invariant recognition
In this section, we illustrate an application of the matching
approach presented above to view-invariant object recogni-
tion. In the experiments, the system is presented with a sin-
gle picture of an object (e.g. face of a particular individual
or a specific model of a car), taken under certain viewing
conditions. The task is then to identify other images of the
same object in arbitrary viewing conditions (i.e. other im-
ages of the same person or the same car model). The scheme
that was used for recognition is an extended version of [6,7],
described in [8]. Briefly, an object from a general class is
represented by the set of object parts, as described in section
3.1. A set of fragments is used to depict each part under all
relevant viewing conditions. This set is called an extended
fragment. The extended fragment is said to be present in an
image if one of its constituent fragments is present. Since
each extended fragment contains information regarding the
appearance of the given object part in all viewing condi-
tions, its presence or absence in the image depends only on
the object and not on the viewing conditions. Therefore, the
list of extended fragments that are active in an image forms
a view-invariant signature for the object, and this signature
may be used for subsequent invariant recognition.

An important step in the scheme is the extraction of ex-
tended fragments. This step requires the matching of cor-
responding object parts across viewing conditions. In [8],
video sequences were used to obtain the matches. Such

Data set �� � ��� Performance (in %)
Illumination – easy 58 10 ���
Illumination – hard 58 10 ��� �

Pose – faces 40 10 ��� �
Pose – cars 28 5 ��� ��

Table 2: Percentage of correct recognition (average � stan-
dard deviation). �� � is the number of training images, ���
is the number of distractors.

video sequences are not applicable to illumination changes,
and are not always available for pose variations. We show
that the matches can be obtained by the fragment equiv-
alence scheme described above, without using video se-
quences and without compromising performance.

In our experiments, four data sets were used. The pose
data set was described above in section 4. The easy illumi-
nation and hard illumination data sets were as described in
section 4, except that images of 68 individuals were used.
In addition, a data set consisting of 33 toy cars viewed from
two widely separated directions was used. Examples are
shown in Figure 2 (top row).

Each data set was randomly divided into training and
testing groups. From the training group, matching frag-
ments were extracted using the fragment equivalence
method described above. These matching fragments formed
extended fragments, which were used in the recognition
stage to represent novel objects of the same class in an in-
variant manner. During recognition, a single picture of a
given object (called ‘target object’) in certain viewing con-
ditions was presented. The task was to recognize the target
object in significantly different viewing conditions among a
set of distractors. Images of objects of the same class as the
target object were used as distractors.

The performance of the algorithm is summarized in Ta-
ble 2. The results illustrate that class-based matching by
equivalence can be used successfully for the task of invari-
ant recognition.

6. Discussion
A class-based scheme for matching object parts across sig-
nificant changes in viewing conditions was described. The
scheme makes no restrictive assumptions about the trans-
formation, and it performs well under difficult conditions
that cannot be handled effectively by previous matching
schemes. The scheme is applicable to a variety of natural
object classes, it is entirely automatic and does not require
examples of correct matches.

In order to perform matching, the scheme uses a vali-
dation database of objects of the same class and in similar
viewing conditions as the images to be matched. In a series
of tests on the pose data set (section 4), the orientation of the
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source and target images was changed systematically from
the orientation in the validation database. The decrease in
performance in these conditions did not reach significance
until the difference in orientation was ���Æ. The conclu-
sion is that the conditions in the validation database need
not match exactly the conditions of the source and target
images.

In assessing the consistency of a possible match, the
scheme uses two sets of images, taken under different view-
ing condition, say conditions � and � �. In practice, images
taken under different conditions may be mixed, and it will
not be known which images belong to � and which to � �.
A simple strategy to deal with this problem is to detect each
fragment in every image of the given object, and select the
highest score. We have compared this strategy with detect-
ing a fragment only in images under known, correct viewing
conditions. The results showed that restricting the detection
to the correct viewing conditions does not yield a signifi-
cant increase in performance. The explanation is that, due
to the fact that viewing conditions change significantly the
appearance of object parts, fragments are automatically de-
tected almost exclusively in the correct viewing conditions.
The conclusion is that when images are not labeled by view-
ing conditions, fragments can still be extracted correctly by
detecting them in all images, without compromising perfor-
mance. All the results presented above have been obtained
using this strategy.

An application to the problem of invariant object recog-
nition was presented. An additional possible application is
to use class-based information in a similar manner to im-
prove current stereo techniques. Most current matching
techniques for wide-baseline stereo rely on affine-invariant
features. The accuracy of matches obtained by these fea-
tures is reduced significantly when non-affine transforma-
tions are present, for example, due to large pose changes
of non-planar regions, the effects of highlights, shadows,
etc. For highly familiar objects, such as faces, class-based
matching techniques could be used to improve the accuracy
of matches. The suggested approach is to use the fragment
equivalence scheme described above, to obtain matches be-
tween object parts as the first stage. Then affine invariants
techniques [2–4] may be applied locally, within small re-
gions of the matched fragments, to refine the correspon-
dences. Since the accuracy of the affine approximation im-
proves for smaller regions, the matches will become more
accurate. (Small regions cannot be used globally due to
matching ambiguities.) Performing stereo matching and 3D
reconstruction in this manner is the subject of future work.
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