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Abstract

We develop an object classification method that can
learn a novel class from a single training example. In this
method, experience with already learned classes is used to
facilitate the learning of novel classes. Our classification
scheme employs features that discriminate between class
and non-class images. For a novel class, new features are
derived by selecting features that proved useful for already
learned classification tasks, and adapting these features to
the new classification task. This adaptation is performed
by replacing the features from already learned classes with
similar features taken from the novel class. A single exam-
ple of a novel class is sufficient to perform feature adap-
tation and achieve useful classification performance. Ex-
periments demonstrate that the proposed algorithm can
learn a novel class from a single training example, using
10 additional familiar classes. The performance is signif-
icantly improved compared to using no feature adaptation.
The robustness of the proposed feature adaptation concept
is demonstrated by similar performance gains across 107
widely varying object categories.

1. Introduction

The problem of classification is usually approached by
using example images to train a classifier to deal with novel
object classes [4]. Current classification methods achieve
high levels of performance, but they typically require hun-
dreds of training examples [1, 9, 13, 15, 17, 19].

The cost of collecting large amounts of training data may
be prohibitive in some cases. For example, when learning to
avoid dangerous objects (e.g. predators), situations that per-
mit acquisition of training examples are hazardous. Since
the system’s behavior is incorrect until a sufficient number
of examples has been gathered, minimizing this number is
crucial to allow adaptation to new situations. Obtaining use-

ful performance with very few training examples is also im-
portant when the learning is incremental (i.e. the examples
are presented sequentially and the system is updated after
each presentation).

Realistic classification schemes should be able to han-
dle a large number of classes. For example, it is estimated
that humans are familiar with tens of thousands of different
classes [3]. As a result, the accumulated cost of learning all
classes may become excessive. Reducing as much as possi-
ble the number of required training examples may help deal
with this problem.

Training examples are necessary in the current methods
to discover useful features in the data, to identify and re-
ject poor and unreliable features, and to train a classifier for
the learned class. In addition to feature appearance, clas-
sifiers can use spatial configuration of the features. In the
scheme used below, the contribution of feature appearance
is more significant than that of their spatial configuration.
Therefore, the discussions below will focus on feature ap-
pearance.

The main hypothesis used in this paper is that a feature
is likely to be useful for a novel class (e.g. dogs) if a similar
feature proved effective for a similar class (e.g. horses) in
the past. This hypothesis is validated empirically in section
4. The hypothesis can be used to facilitate learning, in the
following manner. Assume that for several object classes
(e.g. horses and cows), a sufficient number of examples has
been available to perform feature extraction by one of the
existing methods [1, 17, 19]. These classes will be referred
to as ‘known’ or ‘familiar’. The task is then to learn a new
class (e.g. dogs) from a single example. The main problem
is that a single training example by itself is insufficient to
decide which of the features of the novel class are useful for
classification. Using incorrect features will deteriorate per-
formance. To overcome this problem, features that proved
useful for already familiar classes are adapted to the novel
class. This adaptation is performed by replacing the familiar
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features with novel features that have similar appearance,
as illustrated in Figure 1. In this manner, the merit of each
novel feature is predicted based on its similarity to features
that proved useful in the past. With this approach, a system
that can already classify horses and cows can be extended
to classify dogs using only a single dog example. Since in
this way generalization across different classes is achieved,
we refer to this method as cross-generalization. We demon-
strate (section 4) that cross-generalization allows to obtain
useful classification performance from a single training ex-
ample.

A remarkable characteristic of human cognition is the
ability to adapt and reuse a wide variety of previously ac-
quired skills when learning a new task [12]. This is achieved
by recognizing and exploiting the similarities between pre-
viously acquired skills and the skills required to perform the
new task. The proposed cross-generalization algorithm can
be seen as an initial step towards imitating this important
capability in visual classification.

The remainder of this paper is organized as follows. In
the next section, relevant previous work is reviewed. In sec-
tion 3, we describe the proposed cross-generalization algo-
rithm. In section 4, experimental evaluation of the algo-
rithm is presented. We conclude with additional remarks in
section 5.

2. Related previous work

Typically, hundreds of examples are required for training
by the current classification algorithms [1, 9, 13, 15, 17, 19].
When the number of training examples is insufficient, ‘data
manufacturing’ [4] can be used. In this method, each train-
ing example is used to generate several additional examples
by performing simple image transformations such as adding
random noise or introducing small distortions. If a genera-
tive model that describes the allowed variations of images
within the class is known, then such a method can signifi-
cantly improve classification. However, models to account
for natural variability of objects within a class are usually
not available.

Next, we discuss several algorithms that can handle
small training sets. In [5, 6], parametric class models are
used for classification. The distribution of parameters in
models for the familiar classes is estimated and used as a
prior for parameters of the novel class. This prior helps
avoid inaccurate parameter estimates and increases perfor-
mance compared to using no prior [6]. The two main dif-
ferences from the cross-generalization algorithm proposed
here are the following. First, in [6], a single prior distribu-
tion is learned from all familiar classes. This single prior
is then used for all novel classes. Such a prior will bias
the novel class parameters towards the values frequently ap-
pearing among the familiar classes. For novel classes with

less frequent parameter values, the prior will assign low
probability to the correct values of parameters, leading to
degradation of performance. This undesirable behavior will
not disappear when more familiar classes become available,
because the parameter probabilities depend on relative frac-
tion, rather than the absolute number, of uncommon classes.
Similar bias towards the common classes is present in [10].
For example, suppose that 95 out of 100 familiar classes
represent various quadrupeds and the remaining five classes
represent different kinds of flowers. In this case, any novel
class in [6, 10] will be strongly biased towards quadrupeds.
If the novel class in fact represents a new kind of flower,
this bias will adversely affect the performance. In contrast,
in the proposed cross-generalization scheme, only similar
familiar classes contribute significantly to the novel class.
Therefore, uncommon novel classes are not biased by a sig-
nificant number of irrelevant classes. Continuing the exam-
ple, the novel flower class will not be affected by the 95
familiar quadruped classes because features that are useful
for quadrupeds will be dissimilar to features found in the
flower class. Therefore, only the five relevant flower classes
will contribute significantly to the novel class. Second, the
algorithm proposed below uses class-specific features and
relies mainly on feature appearance. The appearance of fa-
miliar features is adapted to be characteristic of the novel
class (Figure 1). This adaptation helps prevent confusion
between the novel class and similar familiar classes. In con-
trast, features used in [6] are more generic in appearance.
(Features in [6] are constrained to lie in a low-dimensional
subspace common to all classes and all features.) The al-
gorithm in [6] therefore relies mostly on shape (spatial con-
figuration of features). It is therefore complementary to the
approach in this paper that focuses on the selection of new
features from a single example. The two methods can be
combined to achieve improved performance (see section 5).

In [16], features are shared between several classes. This
strategy is useful for reducing the total number of features
required for classifying a large number of classes. The ap-
plication of feature sharing to learning from few training
examples has also been described [16]. However, the moti-
vation behind [16] is not single-example learning; therefore,
this application has several disadvantages. First, the sharing
algorithm used in [16] produces simple generic features,
such as lines and edges. Such generic features are usu-
ally outperformed by more class-specific features [18]. In
contrast, the proposed cross-generalization algorithm uses
features that are highly specific to the novel class (Figure
1). Second, to obtain shared features in [16], all classes
are trained simultaneously. This is an undesirable require-
ment, since in the current problem formulation, a novel
class is assumed to appear after learning of the familiar
classes is completed. An additional disadvantage of simul-
taneous training is that the accumulated amount of training
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Figure 1. Feature adaptation. (a) Top row: features extracted from multiple images of cows (first
three) and horses (last three), as described in section 3.1. Bottom row: features adapted to the
dogs class by the proposed cross-generalization algorithm (section 3.2), using a single dog image.
Each cow or horse feature is replaced by the most similar dog feature, as indicated by the arrows.
Ordinarily, a single training example would be insufficient to determine the merit of the resulting
features. With cross-generalization, their usefulness can be predicted from the usefulness of the
original features. Each novel feature is similar in overall appearance to the corresponding familiar
feature above it, but at the same time has some distinctly dog-like characteristics. (Images from
the ETH database [7].) (b) Similar to (a), left to right: dog face feature adapted to cat face, cougar
adapted to cat, starfish and two lotus features adapted to water lily.

data may present computational difficulties [16]. In con-
trast, cross-generalization suits well the learning paradigm
where classes become available incrementally, and it avoids
the delays required to accumulate a large number of classes.
In addition, since each class can be trained separately, the
cross-generalization scheme has favorable time and mem-
ory requirements.

In [8], prior knowledge about useful feature types and
sizes is utilized to facilitate feature selection for novel
classes. However, this knowledge is insufficient for single-
example learning (10 positive examples and 5000 negative
examples were used in [8]). In addition, human involve-
ment is required to extract the information about useful fea-
ture parameters from the familiar classes. In contrast, the
proposed cross-generalization algorithm performs feature
adaptation with a single positive example, using no nega-
tive examples. In addition, feature adaptation is completely
automatic.

3. Cross-generalization

In this section, we first outline the general classification
scheme used in our experiments. We then describe how fea-
ture adaptation within this scheme can be performed to pro-
duce cross-generalization.

3.1. Classification by image fragments

A number of recent methods use image patches, or frag-
ments, as features for classification [1, 5, 14, 17, 19]. We

used in our experiments a method similar to the fragment-
based algorithm described in [17]. However, the idea of fea-
ture adaptation is applicable also in other similar schemes
[1, 19].

In [17], objects are represented using a set of selected
sub-images, called fragments. Example fragments are
shown in Figure 1. These fragments are combined in a
linear classifier trained to discriminate between class and
non-class images based on presence or absence of particular
fragments. Spatial configuration of fragments is represented
by specifying the rough location of each fragment relative
to a reference frame common to all fragments (similar to the
scheme described in [11]).

During the learning stage, fragments are created from
example images by extracting sub-images of multiple sizes
and at multiple locations. With each fragment, its location
in the original image is stored and used to determine rela-
tive locations of different fragments. A large pool of candi-
date fragments is extracted first, and then a subset of useful
fragments is selected from this initial pool. The selection
is based on the measure of mutual information between the
fragment and the class it represents [2, 17].

To classify an image, this set of fragments is searched for
in the image, using the absolute value of normalized cross-
correlation. For each fragment F , the relevant locations in
the image are determined by the location of F relative to
the common reference frame (see above). Image patches at
the relevant locations are compared with F , and the location
with the highest correlation is selected. When the correla-
tion exceeds a pre-determined threshold θF , the fragment is
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considered present, or active, in the image. The threshold
θF for each fragment F is determined automatically dur-
ing learning to maximize the information delivered by the
fragment about the class [2].

A linear classifier is then used for classification. Let fi =
1 if Fi is present in the given image and fi = 0 otherwise.
The classifier labels the image as belonging to the class if

∑

i

wi(fi) > T. (1)

The weights wi(fi) of each fragment are estimated by the
log-likelihood ratio

wi(d) = log
P (fi = d|C)

P (fi = d|C)
, (2)

commonly used in signal detection theory. Here d ∈ {0, 1}
represents the presence or the absence of the fragment, and
each fragment has two weights, wi(0) and wi(1). P (fi =
1|C) is the probability that Fi is present in an image that
belongs to class C and P (fi = 1|C) is the probability that
Fi is present in an image that does not belong to class C.
P (fi = 0|C) and P (fi = 0|C) are interpreted similarly.
The probabilities are estimated from the training images.
The global classifier threshold T can be adjusted to obtain
the desired tradeoff between hit and false alarm rates.

3.2. Cross-generalization by feature adaptation

Image fragments provide a compact representation of
object classes and can be used for efficient and accurate
classification [1, 14, 19]. However, hundreds of training ex-
amples are required for fragment extraction [1, 17]. When
there is only a single training image, the method described
in section 3.1 will often erroneously select poor features and
produce unsatisfactory performance. The reason is that a
given training image contains multiple uninformative frag-
ments in addition to the more informative ones, and training
examples are required to separate them and identify a subset
of features that can be used reliably.

To identify useful classification features in the absence of
additional training examples, we use the following hypoth-
esis: a feature F is likely to be useful for class C if a similar
feature F ′ proved effective for a similar class C ′ in the past.
This hypothesis is validated empirically in section 4. Using
this hypothesis, effective features for the novel class can be
identified from a single training example by taking advan-
tage of features from familiar classes. This is done by adapt-
ing each familiar feature to the novel class. This adaptation
is performed by replacing a given familiar feature with the
most similar feature from the novel class. Next, we describe
in detail how this replacement is performed.

Let C1 . . . CN denote the familiar classes. These are
classes already learned by the system, and each class is rep-
resented by a set of fragments. Denote the i’th fragment of
the k’th familiar class by F k

i , its threshold by θk
i , and its

weights by wk
i (·). The classifier for the k’th class is then

∑

i

wk
i (fk

i ) > T k. (3)

The task is now to learn a novel class C from a single
example image E. Each familiar fragment F k

i is searched
for in E using normalized cross-correlation. The location
in E with the highest correlation is selected; this highest
correlation will be denoted Sk

i . From that location, a frag-
ment F new of the same size as F k

i is extracted. (We say that
F new was nominated by F k

i .) As in section 3.1, the location
in E from which F new was extracted is stored and used to
determine the relative locations of different fragments. Ex-
amples of fragments obtained automatically in this manner
are shown in Figure 1.

Note that the familiar fragments are only used to facil-
itate selection. They do not appear in the final classifier,
which consists entirely of novel fragments. This is impor-
tant for two reasons. First, using novel fragments that are
specific to the novel class increases the classification perfor-
mance. Second, the use of class-specific novel fragments
reduces the risk of confusion between the novel class and
similar familiar classes. For example, if horse fragments
were used directly to classify dogs, the classifier would run
the risk of confusing the new dog class with the old horse
class. (Experimental validation of these claims is not re-
ported due to space limitations.)

The number of adapted fragments may be large. (In the
experiments in section 4.1, more than 2000 fragments were
obtained.) Such large number is typically unnecessary to
achieve good performance, and therefore it is desirable to
select a smaller subset of the adapted fragments. In addi-
tion, fragments nominated to the novel class by dissimilar
familiar classes are expected to perform poorer than frag-
ments nominated by similar familiar classes. For example,
given a car fragment F k

i , it is possible to find and extract its
best-matching dog fragment. However, fragment similarity
Sk

i is likely to be small, and the performance of the resulting
adapted fragment may be inferior, compared to using better-
matching fragments from similar classes (such as cows or
horses). Therefore, it is desirable to remove the fragments
with low Sk

i . In the experiments described below, a fixed
small number (namely, 25) of the fragments with the high-
est Sk

i was selected. In this manner, by identifying the frag-
ments with the highest Sk

i and the familiar classes to which
these fragments belong, the familiar classes most similar to
the novel class were determined.

Next, thresholds should be determined for the newly se-
lected fragments. Each novel fragment F new was nomi-
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nated by some fragment F k
i to which it was similar. Since

F k
i and F new belong to different classes, it is desirable to

prevent F new from being detected in images that contain
F k

i . This can be achieved by choosing the threshold for
F new to exceed Sk

i , the correlation between F new and F k
i .

In the experiments described below, good performance was
obtained by setting the threshold to 1.1Sk

i .
Finally, a classifier to recognize the new class should

be constructed. A linear classifier that uses the fragments
F new

i has the form
∑

i

wnew
i (fnew

i ) > T new. (4)

The classifier is determined by the values of the weights
wnew

i (·); it is therefore sufficient to estimate these. This es-
timation was performed by reusing the weights of the frag-
ment F k

j that nominated F new
i , i.e., by setting wnew

i (0) =

wk
j (0), wnew

i (1) = wk
j (1). (An alternative scheme of set-

ting wnew
i (1) = 1, wnew

i (0) = 0 was also evaluated, but
performed significantly poorer.) Experiments evaluating the
performance of the resulting classifier are described in the
next section.

4. Results

In this section, we present the classification results ob-
tained by the cross-generalization algorithm (section 3.2)
and compare them to a standalone training algorithm. This
standalone algorithm is identical to the original fragment-
based algorithm described in section 3.1 and does not use
the familiar classes when learning the novel class.

The tests were performed on a database of 107 widely
varying classes. Of these, 101 classes were from the Cal-
tech database [6], and six additional classes were incorpo-
rated. These additional classes included animals and animal
faces. The images were obtained and preprocessed as de-
scribed in [6]. The images were scaled to height of 45 pix-
els. Most classes contained between 40 and 100 examples.
In addition, non-class images, which did not contain any of
the familiar classes, were used as negative examples. A set
of 400 non-class images was used for training. A separate
set of 324 non-class images was used for testing. Some ex-
amples are shown in Figure 2; more examples can be found
in [6]. This large database was used to test the applicability
of cross-generalization to different object classes (section
4.1). However, the method is not limited to large databases.
To illustrate this, a subset of 11 classes was selected, and
performance was also tested on this subset (section 4.2).

4.1. Large database tests

The cross-generalization algorithm was tested using the
leave-one-out method. Each of the 107 classes was tested.

Cat face Chandelier Cow

Crocodile Cup Dog face

Lamp Mandolin Pig

Pizza Schooner Watch

Non-class

Figure 2. Examples of images used in the ex-
periments.

With each class, the remaining 106 classes were used as the
familiar classes for cross-generalization. This is similar to
experiments in [5, 6]. Each familiar classifier was trained
using 2/3 of the available class images as positive exam-
ples and the training non-class images as negative examples.
(The same negative examples were used for all classes.) For
each familiar class, 25 fragments were selected and a linear
classifier was trained. Next, a cross-generalization classi-
fier was created for the novel class. Only a single exam-
ple of the novel class was selected at random for training.
Experiments were repeated 10 times with different random
choices. No negative examples were used in training. The
classifier was trained using the cross-generalization algo-
rithm, as described in section 3.2. Subsequently, the clas-
sifier was tested using the remaining class images and the
testing set of non-class images.

Classifier performance for each class can be character-
ized by the area under the ROC curve. However, since ran-
dom guessing would give an area of 0.5, we use instead
performance margin, defined as 2 · (Area − 0.5), where
Area is the area under the ROC curve. Perfect classifi-
cation would give a margin of 1, while random guessing
would give a margin of 0. The average margin obtained
in the cross-generalization experiments was 0.5± 0.02 (av-
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erage ± standard error of the mean). The difference from
random is highly significant (p � 0.001). As shown in
Figure 4(b), even 10 positive and 10 negative examples are
not sufficient for the standalone scheme to achieve similar
performance. The margin of 0.5 corresponds to average
area under ROC of 0.75, which is slightly better than the
average area of 0.71 reported in [6]. Note, however, that
the experiments described here were more challenging than
those in [6] due to the reduced resolution of the images.
In addition, cross-generalization currently makes only rudi-
mentary use of the spatial configuration of the features. It
is likely that the incorporation of spatial structure similar
to [6] in cross-generalization will lead to further improve-
ment in performance.

Next, the performance of the cross-generalization algo-
rithm was compared to the standalone algorithm. Since the
standalone algorithm requires multiple positive and nega-
tive examples to operate, it was supplied with a minimal set
of two positive examples per class. In addition, two of the
training non-class images were used as negative examples.
The cross-generalization algorithm was also supplied with
two positive examples (no negative examples have been
used). The performance of the learned classifiers was subse-
quently tested on a data set containing images of the novel
class (except for the training images) and the testing non-
class images. Plots in Figure 3 illustrate the performance
achieved on two of the 107 classes tested. As can be seen,
cross-generalization performance is superior to the perfor-
mance of the standalone algorithm.

To compare performance across all 107 classes, the dif-
ference between the cross-generalization and standalone
ROC curves was calculated for each class. This difference
is a curve which, for every false alarm rate, gives the dif-
ference in hit rates. Positive difference indicates advan-
tage of cross-generalization. The difference curves of the
107 classes were averaged. The average difference curve is
shown in Figure 4(a).

The average performance margin of cross-generalization
algorithm in this experiment was 0.55 ± 0.02. On aver-
age, the margin of cross-generalization was 52 % ± 15 %
higher than that of the standalone algorithm. The difference
is highly significant (paired t test, p < 0.001). The conclu-
sion is that cross-generalization significantly improves the
performance of the standalone algorithm.

The purpose of the next experiment was to determine
how the performance of both algorithms depends on the
training set size. For this, the number of positive train-
ing examples was varied between 2 and 10. The number
of negative examples for each test was equal to the num-
ber of positive examples. (Only the standalone algorithm
used these negative examples.) For each training set size,
the average performance margin of the standalone algo-
rithm and of cross-generalization was calculated. The re-
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Figure 3. Performance of the cross-
generalization and standalone algorithms
trained with two positive examples. (The
standalone algorithm also used two neg-
ative examples which were unavailable
to the cross-generalization algorithm.)
Full database (107 classes, section 4.1).
Left: crayfish class. Right: mandolin
class. Plotted: ROC curves. X axis:
false alarm rate. Y axis: hit rate. Solid
line: cross-generalization. Dashed line:
standalone algorithm. As can be seen,
cross-generalization improves the stan-
dalone performance significantly by using
information from the familiar classes.

sulting values are plotted in Figure 4(b). As can be seen,
cross-generalization performance improves with the num-
ber of training examples and remains significantly above
the standalone performance even with 10 positive and 10
negative examples. This suggests that the benefits of cross-
generalization are not limited to single-example learning
and can be substantial even for moderately-sized training
sets.

4.2. Small database tests

The tests described in section 4.1 were performed us-
ing 107 classes. This large database was used to test
the applicability of cross-generalization to different ob-
ject classes. However, the method is not limited to large
databases. To illustrate this, a subset of 11 classes (beaver,
brontosaurus, cougar, crocodile, dalmatian, elephant, emu,
flamingo, gerenuk, hedgehog, leopard) was selected and
cross-generalization performance was tested on this subset.
The results of all experiments were similar to those reported
in section 4.1. Due to space limitations, only a subset of the
experiments is reported here.

The cross-generalization algorithm was tested using the
leave-one-out method, as in section 4.1. With each of the
11 classes, the remaining 10 classes were used as the famil-
iar classes for cross-generalization. Only a single example
of the novel class was selected at random for training the
cross-generalization classifier. Experiments were repeated
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Figure 4. Left: Difference of cross-
generalization and standalone ROC curves
averaged over the 107 classes (section 4.1).
X axis: false alarm rate. Y axis: differ-
ence of hit rates. Positive values indicate
advantage of cross-generalization. Both al-
gorithms were trained with two positive ex-
amples, the standalone algorithm also used
two negative examples. Right: Average per-
formance margin as function of training set
size. Full database (107 classes, section
4.1). X axis: number of positive exam-
ples in training (standalone algorithm also
used same number of negative examples). Y
axis: performance margin. Solid line: cross-
generalization. Dashed line: standalone al-
gorithm.

10 times with different random choices. No negative exam-
ples were used. The classifier was trained using the cross-
generalization algorithm, as described in section 3.2. Sub-
sequently, the classifier was tested using the remaining class
images and the testing set of non-class images. The aver-
age performance margin obtained in this experiment was
0.33 ± 0.03. The difference from random is highly signifi-
cant (p � 0.001).

Next, the performance of the cross-generalization algo-
rithm was compared to the standalone algorithm. As in sec-
tion 4.1, both algorithms were supplied with two positive
examples (the standalone algorithm was also supplied with
two negative examples). The plot in Figure 5(a) illustrates
the performance achieved on one of the classes. As can
be seen, cross-generalization performance is superior to the
standalone algorithm performance.

The averaged difference of ROC curves is shown in
Figure 5(b). The average performance margin of cross-
generalization algorithm in this experiment was 0.4± 0.03.
On average, the margin of cross-generalization was 80 %
± 20 % higher than that of the standalone algorithm. The
difference is highly significant (paired t test, p < 0.01).
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Figure 5. Performance of the cross-
generalization and standalone algorithms
trained with two positive examples. (The
standalone algorithm also used two negative
examples which were unavailable to the
cross-generalization algorithm.) 11-class
subset (section 4.2). Left: ROC curve for
the crocodile class. X axis: false alarm
rate. Y axis: hit rate. Solid line: cross-
generalization. Dashed line: standalone
algorithm. Right: difference of cross-
generalization and standalone ROC curves
averaged over the 11-class subset. X axis:
false alarm rate. Y axis: difference of hit
rates. Positive values indicate advantage of
cross-generalization.

The conclusion is that cross-generalization significantly im-
proves the performance of the standalone algorithm even
when only 10 familiar classes are available.

5. Conclusions

We described a classification algorithm that is able to
learn a novel class from a single example. This algorithm
performs feature selection for the novel class by using prior
experience with features from familiar classes. The merit
of a novel feature is determined by its similarity to other
features, already known to be useful, rather than by using
additional training examples. As a result, novel classes can
be learned from a single example, without even using nega-
tive examples. This is a significant advantage over many
previous methods that require multiple positive and neg-
ative examples [1, 9, 13, 15, 17, 19]. The ability to learn
completely without negative examples is particularly inter-
esting, since the underlying classification scheme used for
familiar classes depends substantially on negative exam-
ples [17]. This ability resembles human learning capability:
when taught a new class, humans rarely receive explicitly
any negative examples.

7



One limitation of the classification method described in
section 3 is its limited use of spatial relations between fea-
tures. We therefore plan in the future to include the use
of spatial information in the cross-generalization scheme.
Currently, cross-generalization relies mainly on appearance
to perform classification. Our experiments demonstrate that
appearance of a novel class can be learned from a single ex-
ample. In contrast, [6] uses mainly shape (spatial relations),
while the appearances of the features are more generic (con-
strained to lie in a low-dimensional subspace common to all
classes and all features). It has been shown [5, 6, 10] that
shape can also be learned when the number of training ex-
amples is limited. Therefore, a promising direction for fu-
ture research is to perform cross-generalization of appear-
ance and shape simultaneously. This can be achieved by
combining the scheme proposed here with [6]. Since cross-
generalization of appearance and shape separately achieves
significant performance improvements over standalone al-
gorithms, combining the two information sources is likely
to further increase the performance.

An additional topic for further investigation is improved
use of similarity between the novel class and the familiar
classes. Currently, the adapted features are selected inde-
pendently, based on the similarity of each adapted feature
to its nominating feature. This strategy may be prone to er-
rors caused by spurious similarities between individual fea-
tures of otherwise dissimilar classes. To avoid such errors,
feature selection can be restricted to familiar classes that
nominate a large number of features with high similarity.
In this manner, selection will be based on the overall simi-
larity of a familiar class to the novel class, as measured by
the similarity of multiple features (rather than just a single
feature). The overall similarity between classes determined
in this manner can also be used to improve the shape esti-
mation. To estimate the shape of the novel class, only the
prior information from similar familiar classes should be
used (rather than information from all familiar classes, as
in [6]).

The experiments in section 4 demonstrate that cross-
generalization outperforms the standalone algorithm even
for training sets of moderate size. This suggests that prior
knowledge remains useful even when multiple training ex-
amples are available. Therefore, it would be interesting in
the future to combine cross-generalization with the regu-
lar standalone algorithm to perform incremental learning.
In the initial stages of learning, cross-generalization should
be used to achieve useful initial performance. In the later
stages, as more training examples become available, fea-
tures adapted by cross-generalization and features learned
by the standalone algorithm can be combined to achieve op-
timal performance.
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