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Abstract

We study visual selection: Detect and roughly localize all instances of a
generic object class, such as a face, in a greyscale scene, measuring perfor-
mance in terms of computation and false alarms. Our approach is sequential
testing which is coarse-to-fine in both in the exploration of poses and the rep-
resentation of objects. All the tests are all binary and indicate the presence or
absence of loose spatial arrangements of oriented edge fragments. Starting from
training examples, we recursively find larger and larger arrangements which are

” which implies the probability of an arrangement appearing on

”decomposable,
an object decays slowly with its size. Detection means finding a sufficient num-
ber of arrangements of each size along a decreasing sequence of pose cells. At
the beginning, the tests are simple and universal, accommodating many poses
simultaneously, but the false alarm rate is relatively high. Eventually, the tests
are more discriminating, but also more complex and dedicated to specific poses.
As a result, the spatial distribution of processing is highly skewed and detection

is rapid, but at the expense of (isolated) false alarms which, presumably, could

be eliminated with localized, more intensive, processing.

1 Introduction

We study face detection in the framework of learning-based, visual selection: Starting
with a training set of examples of a generic object class, in our case a “face,” detect and
roughly localize all instances of this class in greyscale scenes. The training examples
are subimages containing a single instance of the object at various poses, for example
frontal views of faces at a range of scales, tilts, etc. Whereas the backgrounds in
the training samples might be very simple, the detection algorithm must function in
natural, highly cluttered scenes.

Performance is measured by the false alarm rate and the amount of (on-line)

computation necessary to achieve a very small false negative rate, albeit with an



imprecise determination of the pose. In fact, we are going to emphasize computation;
presumably, sufficiently isolated false alarms could be removed, and better localization
achieved, with more intensive but highly localized processing, and therefore with a
modest increase in computation. Finally, other performance factors might also be
important, such as memory, the size of the training set, and the duration of training.

The problem of detecting instances from a generic object class has of course been
studied in the computer vision literature. We restrict our attention to detecting
(but not recognizing) faces, and without information due to color, depth or motion.
The generality of our approach is discussed in the concluding section; any potential
limitations should then be apparent.

A variety of methods have been proposed for face detection, including artificial
neural networks (Rowley, Baluja & Kanade 1998), (Sung & Poggio 1998), support
vector machines (Osuna, Freund & Girosi 1997), graph-matching (Leung, Burl &
Perona 1995), (Maurer & von der Malsburg 1996), Bayesian inference (Cootes &
Taylor 1996), deformable templates (Miao, Yin, Wang, Shen & Chen 1999),(Yuille,
Cohen & Hallinan 1992) and those based on color (Haiyuan, Qian & Masahiko
1999),(Sabert & Tekalp 1998) and motion (Ming & Akatsuka 1998), (Wee, Ji, Yoon
& Park 1998). The precursor of this work is (Amit & Geman 1999): Features are spa-
tial arrangements of edge fragments, induced from training faces at a reference pose,
and computation is minimized via a generalized Hough transform; there is no on-line
optimization and no segmentation apart from visual selection itself. In evaluating our
results, we are also going to focus on comparisons with the work in (Rowley 1999) and
(Rowley et al. 1998) since this seems to be among the most comprehensive studies as
well as a fair representation of the state-of-the-art.

This work stems from a broader project on visual recognition as a “twenty ques-
tions game,” in other words a problem in efficient sequential testing. This theme
was pursued in the context of classification trees and stepwise entropy reduction in

(Amit & Geman 1997), (Geman & Jedynak 1996), (Jedynak & Fleuret 1996) and



(Wilder 1998). The detection counterpart of classification is sequential testing in
order to discover which of two classes is true; one is the target and the other, “back-
ground,” is dominant. For example, we seek to identify one famous person from
among all others, a compound alternative which is a priori much more likely. The
target is represented as a conjunction of elementary attributes (for instance, Napoleon
is simultaneously deceased, general, Corsican, etc.) which can be checked in any or-
der.

If the “cost” of checking every attribute is the same, then naturally a good proce-
dure is to check them in their order of likelihood relative to the dominant class - from
rare ones to common ones. In this way the search is over quickly on the average, but
never fails to detect the target. However, if there are numerous target variations and
if common attributes (relative to the background population) appear in many repre-
sentations, then it makes sense to make “testing” for common attributes relatively
cheaper than for rare ones, in which case it may be more globally efficient to proceed
instead from common to rare. This is the case, for instance, if the cost of testing an
attribute is its negative log-likelihood (as in coding). This type of reasoning moti-
vates our sequential testing strategy: The backbone of the detection algorithm is a
“coarse-to-fine” tree structure which minimizes average computation under a certain
statistical model for cost and likelihood.

In visual processing, the corresponding attributes are binary image functionals; in
fact, throughout this paper, all features are binary, and referred to as “tests.” The
object class is no longer a simple conjunction, but rather, like the background class,
an enormous disjunction of conjunctions. The individual conjunctions correspond
to distinguished object features when the pose and lighting are known to very high
precision. The disjunctions account for general poses (locations, scales, orientations)
as well as finer variations due to lighting and local, nonlinear shape deformations.
Of course efficient detection implies a high degree of invariance - capturing these

disjunctions succinctly, without explicit enumeration.



The most elementary tests correspond to local edge fragments. The fragments
have an approximate location and an approximate orientation; the definition is pur-
posely loose in order to accommodate geometric invariance. The other tests are
products (conjunctions) of elementary ones, and hence correspond to the presence or
absence of a spatial arrangement of edge fragments. They have no a priori semanti-
cal interpretation; the construction is purely statistical and learning-based. The key
property of the products is “decomposability”: each product can be divided into two
correlated subproducts, each of which further splits into two correlated smaller sub-
products, and so forth all the way down to the elementary tests. The motivation is
that the probability that a decomposable test of size k appears on an object instance
decreases gradually as £ increases compared with the decrease in general backgrounds
- in fact exponentially with log, k instead of & (§6).

The testing strategy is based on a sequence of nested partitions of the set of pos-
sible poses. The strategy is coarse-to-fine in the generality of the pose, and coarse-
to-fine in complexity at each level of generality. In order to declare detections, we
successively visit cells in these partitions and successively check for a minimal num-
ber of decomposable tests of each complexity. The order of visitation is adaptive
and chosen to minimize overall computation. Initially, the conjunctions are simple
and sparse (e.g., involve only a few non-localized, non-specific edge fragments), and
thereby accommodate many poses simultaneously; eventually they are more dense
(i.e., larger numbers of more specialized fragments), and hence more dedicated to
specific poses. The result is that flat areas and other “non-object-like” portions of
the image are rejected very quickly and with very simple tests. Highly cluttered areas
require more processing and faces the most of all. In Figure 1 we show an illustration
of the spatial distribution of processing corresponding to the scene in Figure 2; it is
very highly concentrated in the area of detections.

The experiments involve scenes with frontal views of faces. We train with a portion

of the Olivetti database - 300 faces representing 10 pictures of each of 30 individuals.
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Figure 1: The coarse-to-fine nature of the algorithm is illustrated by counting, for
each pixel, the number of times the detector checks for the presence of an edge in
its vicinity. Left: The grey level is proportional to this count. Right: The scan line

corresponding to the arrow; it covers three faces.

The learning algorithm is a procedure for building larger and larger decomposable
tests in a recursive, bottom-up fashion, and dedicated to specific pose cells. The
algorithm for each cell is identical; only the training set changes. A relatively small
training set is sufficient since we only use it to estimate correlations. In particular, we
do not estimate a large system of coupled parameters as in other statistical learning
methods.

One result is displayed in Figure 3. There are definitely false alarms, ranging
from several to several tens depending on the scene, but the processing time and
the number of missed faces are small relative to other algorithms; see §8. Hopefully,
the confusions can be eliminated (without losing faces) with various ameliorations or
with highly selective but relatively intensive processing, perhaps involving greyscale

normalization and on-line optimization.



Figure 2: Example of a scene.

Figure 3: The detections in Figure 2.



2 Organization of the Paper

Since the algorithm is structured around nested partitions of “pose”, we begin with
that in §3. Given a “reference set” of poses, the mathematical set-up and performance
criteria can made precise (§4). A summary of the detection and learning algorithms
is given in §5; the constituents are then fleshed out in the remaining sections, except
for a few technical arguments which appear in Appendices. Section 6 is devoted to
the features we use, especially the notion of “decomposability” and a corresponding
likelihood bound, and §7 explains how the decomposable arrangements - the main
ingredients of the detector - are induced from training data. The sequential testing
strategy for evaluating the detector is then described in §8 and experiments follow in

§9. Finally, there is a critical evaluation of our approach in §10.

3 Pose Decomposition

The coarse-to-fine search is based on a hierarchical decomposition of the set of possible
“poses” or “presentations” of an object. There is an invariant filter for each “cell” of
the decomposition. In this paper the notion of pose is purely geometric, characterized
by position, scale and orientation. However, even for a semi-rigid object such as a
face, there are other aspects of an instantiation which carry valuable information
for selection and discrimination, such as photometric parameters, more refined linear
geometric properties and the existence of sub-components (e.g., glasses and beards).
For some objects - including faces - it could be more efficient to recursively partition
the presentations in a less dedicated way than is done here, thereby accommodating
other important variations.

It is natural to define the pose of an object in terms of distinguished points. No
corresponding features are defined; the points merely serve to define the pose. For
faces, we use the positions of the eyes. Equivalently, the pose of a face has, by

definition, a location (the midpoint between the eyes), a scale (the distance between



the eyes) and a tilt (relative to the axis perpendicular to the segment joining the eyes).
The position of the mouth is then roughly determined by the basic morphology of
the face (although residual variations in the eye-to-mouth distance can be significant
and could enter a finer decomposition). We do not attempt to detect frontal views of
faces at all possible poses. Rather, the tilt (orientation) is restricted to [—20°, +20°]
and the scale to 10 — 160 pixels. Consequently, we do not attempt to detect faces
which are very tilted, very small or very large.

The invariant filters rely on common properties of faces over a range of poses.
But faces at very different scales have very little shared structure, even if they are
roughly superimposed. The same is true for two faces at approximately the same scale
but far apart relative to that scale. Consequently, the coarsest pose cell we analyze
invariantly accommodates all tilts but restricts the scale to the reference range of
10 — 20 pixels and confines the location to the reference block of size 16 x 16. Let ©
denote this reference subset of poses. One can argue that the real detection problem
does begin here; there is certainly enormous variability due to lighting, scale, tilt,
local deformations, and of course different faces.

All the learning is dedicated to ©. Faces in the scale range 20 — 160 are detected
by downsampling and rerunning the algorithm dedicated to ©; faces at locations
outside the reference block are detected by partitioning the image lattice into non-
overlapping, 16 x 16 blocks. More details about these two “outer loops” are given in
§5.

The set of poses © is partitioned M times by successive refinements. Let A, ;,1 =
1,..., Ly, be the I'th cell of the m’th partition, m = 0,1, ..., M. Here, Ag; = © and
for each m = 1,..., M, the collection {An;,! = 1,..., Ly} is a partition of © and
a refinement of {A,_1;,0 = 1,...,Liy_1}. The complete family of cells is denoted
by C. In our experiments, M = 5. There are three quaternary splits on location
(16 x 16 > 8 x 8 - 4 x4 — 2 x 2), and then one binary split on scale and one

binary split on tilt. Modulo translation, this yields eleven different cells, as depicted



Location Tilt Scale
(in pixels) | (in degrees) | (in pixels)
16x16 | —-10 — 1010 — 20
8 X8 -10 — 10|10 — 20
4 x4 -10 — 10|10 — 20
2 x 2 -10 — 10|10 — 20
2 X2 -10 — 0|10 — 20
2 X2 0 — 1010 — 20
2 X2 -10 — 0}]10 — 14
2 x 2 -10 — 0|15 — 20
2x2 0O — 1010 — 14
2x2 0 — 10115 — 20

Table 1: Modulo translation, there are ten different “pose cells” in the hierarchy.
Location, tilt and scale are defined in the text in terms of the positions of the two

eyes. The finest cells are not very fine with respect to tilt and scale.

in Table 1. The finest cells localize the face within a 2 x 2 block and correspond
to either “small scale” (10 — 14) or “big scale” (15 — 20), and to either “left tilt”
([—20°,0°]) or “right tilt” (]0°,20°]). Hence there are 256 fine cells. They are not
really very “fine” but suffice to detect faces with a relatively small number of false
alarms.

In Figure 4 we show a random sample of faces from the training set for each of
three pose cells: The top group of faces have poses with location restricted to an 8 x 8
block, but no restrictions on tilt or scale; the middle group all have location in 2 x 2
block, right tilt, and scale in the full range 10 — 20; and in the bottom group the same
except that the scale is restricted to 15 — 20.

10



Figure 4: Random samples of training faces for each of three pose cells; they are
synthetically generated from the original Olivetti database. Top: Location restricted
to 8 x 8, all tilts and all (reference) scales; Middle: Location in 2 x 2, right tilts, all
scales; Bottom: Location in 2 x 2, right tilts, large scales (15 — 20).

11



4 Performance Constraints

As indicated earlier, the scenario we envision (“visual selection”) is that the algorithm
should be constructed to find all faces with very little computation, certainly well
under one second for average-sized scenes. Weeding out the false positives is to be
accomplished with more intensive but localized processing (or perhaps manually in
some medical, military and other applications).

We can now be more precise about this formulation. Let Z denote a set of
(sub)images I = {I(u,v), (u,v) € G}, say all “natural images,” where G is a ref-
erence grid and I(u,v) is quantized in a standard way, say to 256 grey levels. The
images are partitioned into two subsets, “face” and “background,” denoted Zrp and
Ig. The face images contain a frontal view of a face with pose in ©, where the cor-
responding 16 x 16 block is centered in GG. All other images are background, even if
there is a face at a pose outside ©. Due to limiting the distance between the eyes to
10— 20 pixels, taking G' of dimension 64 x 64 then accommodates all faces at reference
poses.

Let P denote a probability measure on Z. We can think of P as the empirical
measure on 64 x 64 subimages of all larger, natural images. Then P induces two
conditional measures on Z: Py(.) = P(./Zg), the distribution on the background
class, and Pi(.) = P(.|ZF), the distribution on the object class. Similarly, for any
subset A C ©, we define Py to be the induced probability measure on faces with a
pose in A.

A detector is a mapping f : Z — {0,1} where f(I) = 0 indicates “background”
and f(I) = 1 indicates “face.” The false negative error of f relative to A is a(f) =
Pr(f = 0); the overall false negative error is P;(f = 0) and the false positive error is
Po(f =1). An invariant detector has a(f) = 0.

In §8 we will define a random variable which is the cost of a procedure used
to evaluate f. The mean cost with respect to P, represents the average amount

of computation necessary to classify a background image. The motivation for the
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expectation relative to P, is that P(Zr) < P(Zp); hence computational efficiency is

driven by the rate at which background images are rejected as face candidates.

5 Summary of the Algorithm

There are really two algorithms - one for detection and one for learning. What follows

is a summary of each one.

5.1 Detection

The detection algorithm has four nested loops. The two outer loops focus attention
on a subset of scales and locations, namely a copy of © determined by a particular
64 x 64 subimage at a particular resolution. The two inner loops are the important
ones and represent the coarse-to-fine search over refinements of the pose and over the
complexity of the features. The outer loops are inherently parallel and the inner ones
are serial.

One part of the outer loops is over resolutions. We downsample once (by averaging
two-by-two blocks) in order to detect faces at scales 20 — 40, twice to detect scales
40 — 80, and thrice to detect scales 80 — 160. The other part of the outer loop is
over blocks. We partition the lattice into non-overlapping 16 x 16 blocks, and visit
each one to determine if the image data in the surrounding 64 x 64 region supports
the hypothesis of a face located there. Thus, at every resolution and in every block,
we are only looking for faces at a reference pose. Surely there is some redundancy in
separately analyzing the image data in each such region. For example, the basic local
features are detected first throughout the image and other elements of the processing
could be implemented more globally.

The two parts of the outer loop are depicted in Figure 5. The original image is on
the left; it is downsampled once in the middle and twice on the right. In each case,

the partition into non-overlapping 16 x 16 blocks is indicated by the overlaid grid.
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Figure 5: The two parts of the outer loop are depicted above. The original image, on
the left, is downsampled once (middle image) and twice (right image). The scale of
the smallest face is less than ten and hence this face is not detected. The next three
in size are in the scale range 10 — 20 and should be detected in the left image and the

biggest face should be detected in the middle image.

From left to right, the third (middle) face is too small to be detected; the first, fourth
and fifth faces are in the scale range 10 — 20 and therefore we expect to detect them
in the left image; the second face is in the range 20 — 40 and we expect to detect it
in the middle image.

The heart of the detection algorithm, the inner loops, is the search for a face in
an image I € T with pose in ©. For each cell A € C, the learning routine (see below)
yields an invariant detector fy. The final detector, call it F' : T — {0,1}, depends
only on the binary values {fx, A € C}: F(I) = 1 if and only if there is a “chain of
ones” - a complete sequence of positive responses among the {fr, A € C} ranging
from the coarsest cell Ag; = © down to one of the finest cells. In other words, there
is a sequence {Ap,,,,m =0,..., M} with Api1y,... C Ay, such that fa(f) =1 for
each such A = A, ..

However, we do not evaluate F(I) by first computing every fa(I) and then check-
ing for a chain of ones. This would be highly inefficient. Instead, among all sequential

procedures for evaluating F', we take the one which minimizes the average amount of
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Figure 6: The function Z(I) is the number of conjunctions of size k£ found in the
image I. Instances of clutter and faces are separated by progressively checking for at
least ¢(k) conjunctions of size of k. Many subimages can be immediately dismissed
as object candidates based on edge counts alone (Z;); more global confusions require

further examination involving increasingly structured edge arrangements.

computation under a certain model for the computational cost and the joint proba-
bility distribution (under P,) of the random variables { fo, A € C}.

Finally, each detector fy embodies a coarse-to-fine progression in feature complex-
ity. The features are conjunctions of disjunctions of edge fragments; the complexity is
the size of the conjunction. “Tests” of every complexity £ = 1, ..., K must be verified
in order to continue processing. Thus, each f) has the form of a right vine (Figure
6) proceeding from £ = 1 down to £k = K, just as in checking for Napoleon. Veri-
fying a test of complexity £ means finding at least ¢(k) conjunctions (decomposable

arrangements) of size k: see §6.

5.2 Learning

Whereas f, is defined explicitly (in §6) in terms of a Py-dependent family of random
variables on Z, the actual construction is inductive, based on a sample of training

images of faces with a pose in A. Up to translation and reflection, there is one
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learning problem for each cell A in the decomposition of ©. In other words, if one
cell can be shifted or reflected to another then obviously we simply shift or reflect
the tests. Thus, with our decomposition (three times quaternary in location and one
time binary in scale and tilt), there are seven separate learning problems; these are
the cells in Table 1 modulo reflection around the vertical axis.

The learning might be simplified by “scaling” the tests dedicated to one cell in
order to construct tests for another cell with a different range of scales but otherwise
equivalent. We have not done this. In the limit, one could train only at a reference
pose and then attempt to transform the tests to accommodate any given subset A
of poses. Despite the reduction in the amount of training, there are disadvantages.
How does one transform the tests so as to maintain both efficiency and discrimination
power? We have not explored the tradeoffs.

We induce features and estimate thresholds based on the empirical measure Py
generated by a training set £,. By and large, training amounts to estimating the
probability distribution under P, of image events, i.e., calculating relative frequencies
in L,; these estimates determine the components of fy. The training set L, is
assumed to be a random sample from Z under P,. An important constraint is that
the size of £, would not be sufficiently large to reliably estimate a number of inter-

dependent parameters of the same order as the number we estimate.

6 Features

Throughout this section, we fix a pose cell A € C. A test is a binary function on Z.
We will define a hierarchy of tests, from simple and localized to more complex and
more spatially extended, whose statistics in the two populations Zp and Zg become
increasingly disparate. In §6.1 we define “elementary tests” X;, which represent

localized edge fragments and involve comparisons of intensity differences; then, in
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§6.2, we consider conjunctions

Xa=]]%
i€A
of elementary tests, which represent spatial arrangements of edge fragments.
Define 6;(u) = 0 if u < ¢t and 6;(u) = 1 if u > ¢. The detector fj dedicated to A
is then:

K(A)
o= ] ¢ (ZXA) (1)

k=1 AcA
where ¢ = ¢(A, k) is a threshold and A = A(A, k) represents a distinguished family

of conjunctions of size k dedicated to poses in A. The particular conjunctions A € A
are the “decomposable” ones mentioned earlier. As we shall see, the difference in
likelihood of the events {X4 = 1} on faces and general backgrounds grows quickly
with & = |A|. This property is pivotal in reducing the sums to manageable size (order

100), thereby “summarizing” a large disjunction of conjunctions.

6.1 Elementary Tests

An elementary test is a local disjunction of local filters. In our experiments the
local filters detect edge fragments; other, more sophisticated, filters might be more
effective. The edge filter we use is described in (Amit & Geman 1999) and additional
details may be found in (Fleuret 2000). Briefly, the filter is applied at each location
in GG, and has an direction (horizontal, vertical, and two diagonals) and a contrast
(positive or negative), yielding eight “types” denoted by £ =1, ...,8. For example, in
the case of a horizontal edge “at” (u,v), the absolute difference |I(u,v) — I(u,v+ 1)]
is compared with a threshold, with the differences |I(u,v) — I(u/,v")| for the nearest
neighbors (v',v") of (u,v) and with the differences |I(u,v + 1) — I(u',v")| for the
nearest neighbors (u’,v") of (u,v + 1); it has positive contrast if I(u,v) > I(u,v + 1).
The definitions of the other filters are analogous.

The principal motivation for using comparisons of intensity differences is to gain

a measure of photometric invariance. One major difficulty in detecting faces is the
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Figure 7: Detected edges on a training face under three illuminations.

variation in the appearance of faces due to the vagaries of lighting; see for example
the discussion in (Ullman 1996). In order to diminish the variation, methods such as
those based on neural networks usually require preprocessing (Rowley 1999), for in-
stance subtracting a linear component from the grey level map followed by histogram
equalization (Sung & Poggio 1998), which can be costly. Instead, the information we
extract from the greylevels are comparisons of intensity differences, which are invari-
ant to linear transformations of the greyscale. In Figure 7 we show three versions of
a training face together with the detected edges.

There is an one elementary test X = X (I) for each location (u, v), each filter type
¢ and each “tolerance” n = 1,2,...,10. Then X = 1 if there is an edge of type £ at
any location along a line of length n centered at (u,v) and orthogonal to the filter

direction; otherwise X = 0. Thus, for example, in the case of a positive, horizontal
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type at location (u,v) and tolerance n = 3, the test X = 1 if there is an horizontal
edge with positive contrast at at least one of the locations {(u,v—1), (u,v), (u,v+1)};
see (Fleuret 2000) for more details.

The tolerance parameter 7 is crucial for achieving a degree of invariance to small
geometric deformations of the intensity surface. It allows the elementary tests to be
adapted to the generality of the pose. The larger is A, the more the edges need to
“float” in order to capture a reasonable percentage of object presentations. Specifi-

cally, for each cell A, we only consider elementary tests for which
Py(X =1) > 0.5. (2)

These probabilities are estimated from £; in other words we require X (I) = 1 for
at least fifty percent of the training faces I with a pose in A. In addition, we then
suppress other elementary tests of the same type and location with a tolerance larger
than 7, which necessarily also satisfy the constraint, thereby keeping only the min-
imal tolerance achieving a fifty percent incidence. Let {Xi, X5, ..., Xy} denote the

surviving elementary tests, where N = N(A).

6.2 Decomposable Tests

We refer to a subset A C {1, ..., N} as an arrangement since it determines a
set of approximate locations (and orientations) in the grid G' corresponding to the
elementary tests X;,2 € A. Then X, = 1 if and only if X; = 1 for each 7 € A, a
spatial conjunction of elementary tests. Let suppX; C G be the set of n edge locations
which appear in the definition of X;. In order to limit the family of arrangements
we shall assume that suppX; () suppX; = 0 whenever 7,5 € A and i # j. We write
|A| for the size of A. The family {X4} is our pool of features; the classifier will be
constructed from a subset of these - the decomposable ones - as indicated in (1).
We want to find arrangements A for which the statistics of X4 are as different

as possible under P, and P,. Since estimation under P, is problematic (see §10),
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{1,2,4,5, 9}

{1} {4} {5, 9} {2}

Figure 8: A test is p-decomposable if it can be broken down in at least one way into

positively correlated subarrangements.

we will attempt to obtain the desired disparity by constructing arrangements which
are large but still likely under P,. Size alone renders them rare under F,. The
construction is based on correlation. Let p(U, V) denote the correlation coefficient of
random variables U and V with respect to Py. For binary variables with 0 < P (U =
1), PA(V =1) < 1 we have

PA(U=1V=1)-PU=1)P(V=1)
(PA(U =1)Py(U = 0)Py(V =1)Py(V =0))/2

p(U,V) =

Consider arrangements X;X; of size two. We could filter all such pairs by re-
quiring that p(X;, X;) > p for some threshold p, 0 < p < 1. This yields pairs of
elementary tests which tend to occur (or not occur) together on objects. Similarly,
X;X; X} might be a good candidate for a discriminating arrangement of size three if,
in addition, p(X;X;, Xx) > p. Continuing in this way, we can single out arrangements
of size four by combining two “good” pairs X; X, and X; X; and further requiring that
p(X;X;, X X;) > p. And so forth.

Define a decomposition of A to be any nested set of binary partitions (i.e., suc-
cessive binary refinements) all the way down to individual elements of {1,2,..., N}.
We shall also assume that a partition element splits evenly if its size is even and

splits into two child elements whose sizes differ by exactly one if its size is odd.
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Call it a p-decomposition if the correlation inequality holds at every split. In Fig-
ure 8 we show one decomposition of A = {1,2,4,5,9}. It is a p-decomposition if
p(X1 Xy, XoX5Xo) > p, p(Xy, X4) > p, p(X5Xy, Xo) > p and p(X5, Xg) > p. Fi-
nally, an arrangement A, or the corresponding test X 4, will be called p-decomposable

if there is at least one p- decomposition of A. Summarizing,

Definition: A test X4 is p-decomposable if it is an elementary test or if exists two

p-decomposable tests Xp and X¢ with
e A=BUC, BNC =1
e [B|-[C][<1

e p(Xp,Xc)>p

6.3 A Likelihood Bound

In general Py(X4 = 1) and Py(X4 = 1) depend on A and decrease as |A| increases.
A reasonable assumption for P, is some type of exponential decrease, and indeed
this is what we observe empirically. On the other hand, if X 4 is p-decomposable, we
should expect a slower rate of decrease under P,. This is certainly what we observe
experimentally; see Figure 9. In fact, the rate of decrease is p'°®2%. As a result, for
“reasonable” values of p, PA(X4 = 1) > Py(X4 = 1) for “large” A. We cannot say
anything precise about the likelihood ratio since we do not propose a model for F,.
But we can give lower bounds on Py(X4 = 1). Let A(A,k, p) denote the set of all
p-decomposable arrangements with |A| = k.
Two bounds are easy to obtain. One is
k

Py(X4=1)> (12?]\] P\(X; = 1)) (3)
which results directly by iterating the basic inequality that defines decomposability.
Another is Py(X4 = 1) > U(k), obtained numerically and recursively from
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Figure 9: The empirical behavior of randomly selected decomposable tests.
vertical axis is log-probability and the horizontal axis is complexity (k). Left: Esti-
mated probabilities on face and background subimages. Right: Three lower bounds:

numerical U (+++), analytical (4) (dashed line), exponential (3) (solid line).

e U(0) = minj<j<n Pa(X; = 1)

o U2k) =p-U(k)- (1 — U(k)) + U(k)?

o URk+1)=p-\/Uk) - 1—U®) -Uk+1)-1L=Uk+1)+U(k)-Uk+1)

There is no analytic expression for U.

A closed-form bound which is larger (and hence better) than the exponential
bound is given below. We will assume that Py(X4 = 1) < 0.5 forevery A € A(A, k, p).
This is implied by Py(X; = 1) < 0.5, which is the case in practice if we replace the
value 0.5 in (2) by one slightly smaller because, due to the tolerance parameter, the

probabilities in (2) cluster tightly just above the threshold.

Theorem 1: For any k > 1, p >0 and A € A(A, k, p),

— > 1 J— . 10g2k_
Pr(X 4 1)_11SnilSnNPA(Xz 1)-p
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In Figure 9 we display the shape of these bounds as well as the empirical behavior
of tests. For each k, there are ten estimated values of Py(X4 = 1) for ten tests X4
randomly sampled from thousands learned from training data; see §7. The estimates
are relative frequencies in training data. As can be seen, the bound in (4) captures

the actual rate of decrease fairly well.

6.4 Progression in Feature Complexity

As indicated earlier, we implement f, as the series of filters defined in (1) and depicted
in Figure 6. Each filter is applied only when all simpler ones have rejected background.
Since the overwhelming majority of subimages examined are in fact background, very

few are investigated in detail. As seen in (1), the filter of complexity & is

ZapI) = D> Xal),

A€ A(Ak,p)
the number of p-decomposable tests of size k£ which are positive on I.

For simplicity, we fix p and suppress it from the notation. In theory, the optimal
value is the one which minimizes the false positive rate of fy, but we have not per-
formed any systematic exploration of the possible values, or even considered allowing
p to depend on A. In all experiments we take p = 0.1 for every pose cell.

The maximum size K and the thresholds ¢(1), ..., t(K) are determined as follows.
Let K be the largest £ which “covers” the object class in the sense that P(Zax >
1) = 1. (In our experience it never happens that arrangements of size k cover but
arrangements of size j < k do not.) Given thresholds ¢(1),...,#(K), and according
to (1), we classify I as object if it contains more than ¢(k) p- decomposable tests of

size k for each k =1, ..., K. The thresholds (1), ...,t(K) are defined by
t(k) = max{j : PA(ZA,k Z j) = 1} (5)

In other words, the thresholds are the maximum values which preserve the hard

constraint that a(fy) = 0.
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There are several practical obstacles to implementing the detectors fj exactly as

defined in the previous section.

7

e We don’t have A(A, k, p). This would require far more precise information about

P, than can be gleaned from any training set. Also, the family is too large to
enumerate. Instead we will estimate a fixed number of decomposable tests of

each size, basing correlation estimates on L.

The thresholds are difficult to estimate directly from £ without overfitting.
In the following section we shall indicate how this can be accomplished by
synthetically enlarging the training set. This also solves the problem of having

enough data to estimate correlations for fine pose cells.

If a subset of decomposable tests is selected based on likelihood alone, the
test locations will concentrate on certain regions of the object and be highly
redundant, as well as provide no protection against occlusion. Consequently,
for each k, we force the decomposable tests to “spread out” by restricting the

number of times each original edge appears in an arrangement.

Feature Learning

Assume A is still fixed and let £, be the set of training images with pose in A. Most

of the images in £, are obtained synthetically by transforming images in the original

training set £. Bearing this in mind, in order to simplify the notation we shall simply

write £ for £, and A(k) for A(A,k, p), the set of all p-decomposable arrangements

of size k, as defined in §6.3. One goal of learning is to estimate a subfamily of
Ar(k) C A(k) of size n for each k < K. The other learning task is to estimate the
thresholds (1), ..., t(K).

Whereas the definition of a decomposable products is top-down, the production of

examples is bottom-up. Correlations are estimated under PA, the empirical measure
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derived from £ (La). The construction is recursive: First build a family {X;X;},
then a family {X;X; X}, etc. In order to construct decomposable products of size
2k we only need those of size k, and to construct those of size 2k + 1 we only need
those of sizes k and k + 1.

Eventually, we want tests { X4, A € Az(k)}, k=1, ..., K, with various properties.

e First, they should “cover the population” in the sense that, for every face image,
at least one test of each complexity is positive. In other words, t(k) > 1 for
each k =1, ..., K, where t(k) is defined in (5). (Of course the probability in (5)

is estimated from Py.)

e Second, they should be “spatially non-redundant,” in the sense of having sup-
ports spread out over the image plane. This does not occur naturally; indeed,
without some constraint, the locations of the tests tend to accumulate on certain

areas of the face.

e Third, there should be relatively few tests. Specifically, the sums appearing in
(1) should be of order 100; otherwise, we lose computational efficiency. Indeed,
having a “small” number of decomposable tests with the two properties above

implies a large degree of invariance.

For each k we first generate a very large family (k) of decomposable tests and
then select a subset F°(k) C F(k) of size N by random sampling subject to the first
two constraints mentioned above. The final set, A.(k), is a small subset of F°(k).
This multi-step procedure is how we generate a family which is sufficiently rich to
contain a smaller subfamily which has all the desired properties.

Consider the even case. The large family F(k) is the set of all arrangements

A1 |J Ay where
° Al,AQ € fo(k),
b ﬁ(XAUXAz) > P;
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o suppXa, () suppXa, = 0.

Here, suppXa = UjcasuppX;. The process is initialized with F°(1), the family of
distinguished elementary tests described in §6.1. If the covering condition for the
elementary tests fails, then we do not attempt to build a classifier at the level of
generality of A. For instance, the covering condition fails if the location of the face
is allowed to roam over a 32 x 32 block (and scale and tilt are unrestricted). This is
why we begin at the 16 x 16 level. The process terminates when it is impossible to
satisfy the constraints. Generally, N < |F(k)| < N%. The exact sampling procedure
for choosing F°(k) C F(k) and then A.(k) C F°(k) is described in (Fleuret 2000).
Ghe natural estimators of the thresholds (1), ..., ¢(K) are

~

t(k) =maz { t: Py Z Xp>t]| =13, k=1,...,K.

A€ AL (k)
Due to the synthetic deformations of the original training faces, these thresholds are
actually very conservative and can be used in practice as defined.

Finally, by construction, the tests in A, are p-decomposable with respect to Py.
Are they p-decomposable with respect to P,? It appears that some are not and some
are at even a larger value of p. Let py = .1; this is the value used in our experiments.
Recall that each constructed A € A(A, k) has a proposed py-decomposition. One can
then use additional data to verify this decomposition by re-estimating the correlations.
Further, one can determine p..(A), the maximal value of p for which the given
decomposition of A is a p-decomposition. This value may be smaller or larger than p,.
Some results are reported in (Fleuret 2000). For example, in one typical experiment,
the proposed decompositions for about 95% of the arrangements are valid at p > 0,
80% at p > .1 (the target value) and 45% at p > .2. These estimates are conservative

because the arrangements could decompose differently.
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8 Sequential Testing

Recall that the exploration of poses is based on a sequence of nested partitions of
© corresponding to divisions on location, scale and tilt. We declare a face with
pose in O if and only if we confirm at least one decreasing sequence of pose cells
arriving at a fine cell. We use a tree-structured strategy for checking this condition.
Roughly speaking, the tests {fo, A € C} are performed adaptively in the order which
would minimize the mean amount of computation (under the background hypothesis)
necessary to determine F' under a certain statistical model described in Appendix C.
That particular adaptive procedure, “the coarse-to-fine tree,” is the topic of this
section.

Let v(j) denote the set of ancestors of the fine cell Aysj,7 =1, ..., L

() ={(m, 1) : Amj C Ay}

The detector fa corresponding to cell A = A, ; will be denoted by fr,;. Then F(I) =1
if and only if I € T, where

I'={IeZ:3j> V(m,l) €7(j) fma(I) =1} (6)

This characterizes F but does not describe an algorithm for evaluating it. The par-
ticular algorithm for checking the condition I € I' is what we refer to as the testing
strategy and is described below.

Under very mild assumptions (see Appendix B), any detector f based entirely
on the filters {fx, A € C} has overall false negative error zero (i.e., with respect to
P, = Pg) if and only if f(I) = 1 for every I € I". Consequently, among all such
detectors, the smallest false positive error is achieved by f = F.

We describe the testing strategy for a binary decomposition of © (L, = 2™). The
general case is the same but the diagrams are messy. Let 7 be the family of all labeled
trees which evaluate F'. Each T € T is a variable-depth binary tree with each internal

node labeled by a test in { f,,;} (the same test may appear more than once) and each
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Figure 10: A binary decomposition of pose space and a “chain of ones” indicated in

grey.

external node (leaf) is labeled either “0” or “1”. The left (respectively, right) branch
emanating from an internal node labeled by f,,; indicates f,,; = 0 (resp., f; = 1).

Overloading the symbol T', we will also write T'(I) for the corresponding detector:
T(I) = 0 (resp. T(I) = 1) if sending I down the tree leads to a “0” (resp. “1”)
leaf. In order to represent F, T(I) = 1 if and only if I € T. This means that a leaf
t is labeled “1” if and only if, for some j = 1,..., Ly, the history of tests along the
branch from ¢ to the root contains the event {f,; = 1V(m,l) € v(j)}. See Figure
10. Equivalently, a leaf ¢ is labeled “0” if and only if there is a covering partition of
“0” tests, i.e., the leaf history contains an event of the form {f,,, , =0,7=1,..., R}
where U, Ay, ;, = O.

Of the many trees in 7, the least efficient simply performs all the tests in some
fixed order along every branch and therefore has depth uniformly equal to Z%:o Ly,.
Another procedure is the “depth-first, coarse-to-fine” tree T*. It is depicted in Figure
11 and Figure 12 for the two cases M = 1 and M = 2, and can be defined recursively,
as indicated in Figure 13. It is unique up to a permutation of the testing order within
each layer, which has no significance. The tree T™* is the representation of the detector
used by the algorithm. It is efficient because no finer test (along a chain) is ever

performed before all coarser ones have failed to eliminate a candidate subimage, and
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Figure 11: The coarse-to-fine tree 7™ for M = 1.

the testing is stopped when F' is determined. Notice that the visitation of cells is not
strictly coarse-to-fine along every branch of the tree, i.e., there is “backtracking” up
the pose hierarchy.

In Appendix C we present a model for the statistical distribution of the tests
{fa,A € C} with respect to Py, as well as their cost structure. Let #H denote this
set of hypotheses and let EqC(T') denote the expected cost of T € T under Py (see
Appendix C). Then

Theorem 2: Under H, the coarse-to-fine tree minimizes computation:

TeT

Notes: i) In an earlier version of this paper, this result was stated as a “conjecture.”
It has since been proven in collaboration with Franck Jung. The proof, which is
rather complex, will appear elsewhere.

ii) In processing real scenes, the algorithm based on T™ is in fact considerably faster
than various alternatives, such going straight to the fine cells, in which case the

processing image corresponding to Figure 1 is much flatter (Fleuret 2000).
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Figure 12: The coarse-to-fine tree 7™ for M = 2.
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Figure 13: Recursive definition of 7.
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9 Experiments in Face Detection

We have extracted 300 images from the Olivetti database of faces, corresponding to
ten different frontal views of each of 30 individuals; this is £. On each image, we
have marked the locations of the eyes. This determines our three pose parameters -
position, scale and tilt. The decomposition of © into pose cells was described in §3.
To generate Ly, i.e., training faces with a pose confined to A, we cannot simply use
an appropriate subset of £ since there will not be enough data for “small” cells. This
is due to a limited sample of scales and tilts (we can always translate to any desired
location). To overcome this, we synthesize a set £, of size 1200: For each I € L we
select four poses from A at random (uniformly in position, scale, tilt) and then scale

and rotate I to acquire each of these poses.

9.1 Learned Arrangements

Randomly chosen examples of learned arrangements of size eight are shown in Figure
14. The grey regions indicate the amount of disjunction in elementary tests. These
arrangements are typical of the thousands inferred from L. Generally, they utilize
elementary tests based on edges in the region of the eyes, the mouth and the contours
of the face.

One measure of the discriminating power of the tests was illustrated in Figure 9.
Whereas we can build arrangements up to size 35, the maximum size K(A) in the
final detector is closer to 10 due to the covering criterion. We randomly sampled ten
tests for each £ =1, ..., 35 and estimated the probability of a positive response given
face (based on L) and given background (based on randomly selected locations in
natural scenes).

Figure 15 shows the estimated distributions of Z, j under P and P, for k = 5
and k£ = 8. The possible values of Z, j are {0,1,...,100} since | A x| = 100. Finally,
Figure 16 depicts an estimate of the function £ — Py(Z; > t(1),..., Z > t(k)), the
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Figure 14: A random sample of learned decomposable arrangements of size nine. The

shading indicates the amount of flexibility in the edge location.
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Figure 15: Estimated distributions of Z; (left) and Zg (right) on faces and background

samples.

rate at which false positive error decreases with test complexity, shown as a solid line.
The “+”s refer to the individual statistics Py(Z > t(k)). The estimates are based

on a large number of non-face images found on the WWW.

9.2 Processing Scenes

The search for a face at a reference pose terminates as soon as a chain of ones is
found. Consequently, there is exactly one fine cell associated with each detection.
However, given a face is present, the fine cell which is identified may be due to clutter
in the vicinity of the face, and hence the precision of the detection is only reliable at
the level of the coarsest cell. Still, the information in the fine cell is nearly always a
very good guess at the pose. In our experiments, the coarsest cell restricts location
to a 16 x 16 block; there is no restriction on tilt and no restriction on scale within the
reference range, which means detecting scale in one of the ranges 10 — 20, 20 — 40,
etc. The number of false positives is then the number of these coarse cells which are
detected at some resolution and which do not contain a face.

We have tested the algorithm on several scenes collected from the WWW and
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Figure 16: The rate of decrease in false alarms with text complexity.

from the set “C” of images collected at Carnegie Mellon University by H.A.Rowley et
al (Rowley et al. 1998). One result appears in Figure 3. The scene is 450 x 380. The
three faces which are about half-visible are missed. In Figure 17 we indicate the rate
at which the number of alarms decreases during the focusing in pose, i.e., with the
number of splits on the coarse cell. The value 714 in the righthand panel is the total
number of 16 x 16 blocks in the image at all resolutions. Other results are shown in
Figure 18 and Figure 19.

Measuring the amount of computation is not entirely straightforward. It depends
on the scene, the computer, the source code and perhaps other factors. With a PC
Pentium II (450Mhz), it takes about one-half second to process the scene in Figure
2; this is an average over 100 runs. Most of this time is spent on extracting the
elementary tests; computing the detector F' (at all resolutions) requires only about

one-tenth of a second. Clearly, more efficient preprocessing would help.

9.3 Improvements

One fundamental limitation is that false detections often occur in areas of very high

edge activity, as in foliage or fine textures. Indeed, nothing changes if edges are added
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Figure 17: The number of alarms (detections) as a function of the depth m of focusing
in pose space. The value corresponding to m is the number of blocks surviving past

the the m’th partition.

to the vicinity of a region already labeled as a face. In order to remedy this flaw, we

have done some preliminary experiments with “negative tests.”

We use exactly the
same learning protocol and detection algorithm, except that we add elementary tests
whose response is positive when the local filter response is negative everywhere in a
strip orthogonal to the edge direction. We have also experimented with a finer pose
decomposition, for instance splitting more than once on scale or tilt, and with more
general notions of pose (see §3). Preliminary results are promising and suggest that

many of the false positives can be eliminated.

9.4 Comparisons

It can be hazardous to compare the performance of one method with that of another.
Still, due to the comprehensive analysis in (Rowley 1999) of publicly available images
and to our familiarity with (Amit & Geman 1999), a few general statements appear

evident. First, our false negative rate is smaller; a 15% rate is reported in (Rowley
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Figure 18: Additional results
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Figure 19: Additional results
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1999) for an ensemble of images, and other authors (e.g., (Miao et al. 1999)) obtain
similar rates. This is consistent with our formulation of the visual selection problem.
Second, there seem to be fewer false alarms in (Rowley 1999). This statement is
based on processing some of the same scenes as those analyzed in these references. It
should be noted that no reported algorithm detects nearly all faces and nothing else.
Our algorithm is faster than the one in (Amit & Geman 1999) and much faster than
the one in (Rowley 1999), which requires 140s to process the scene in Figure 2 (with
the PC mentioned earlier) and about 2s with a two-step, coarse-to-fine process for
which the ensemble false negative rate climbs to 26%.

There are other measures of efficiency. The algorithm in (Amit & Geman 1999)
is perhaps the simplest: The object representation is very compact and training only
occurs at a reference pose, requiring only a few minutes as opposed to about an hour
here and much longer in (Rowley 1999). Our face training set is the same as in (Amit
& Geman 1999) and smaller than in (Rowley et al. 1998),(Sung & Poggio 1998).
Finally, we often localize with less precision than some other algorithms. We could
do better with more computation, for example by not terminating the search upon

the first positive chain of responses; obviously there are many tradeoffs of this nature.

10 Discussion

We have argued that a good start on solving vision problems might be to think
about computation, and this leads naturally to coarse-to-fine processing in several
senses, including feature complexity and the search over nuisance parameters. Start
with the simplest and most common properties over presentations, almost regardless
of discriminating power; rejecting even a small percentage of background instances
with cheap and universal tests is efficient. Then proceed to more complex and/or
more dedicated properties, reserving any computationally intensive search for the

very special confusions - those inevitable and diabolical arrangements of clutter which
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“look” like objects in the eyes of the features. Also, design the search to account for
the fact that detecting an object at any given pose, or even localized set of poses, is an
extremely rare event. We have illustrated these ideas with experiments on detecting
frontal views of faces over a limited range of tilts and a large range of scales. Although
there are certainly false alarms, the algorithm is fast and unlikely to miss a face.

This type of reasoning does not seem to drive the construction of very many
vision algorithms, at least not in academic research. Instead, computation is usu-
ally an afterthought; for example, one seeks ways to speed up an algorithm origi-
nally motivated by other principles (deforming templates, the world is 3D, vision is
compositional, inference should be Bayesian, etc.). Some notable exceptions include
work on hashing (Lamdan, Schwartz & Wolfson 1988), Hough transforms (Rojer
& Schwartz 1992),(Amit & Geman 1999), (Amit 1999), and tree-structured search
(Grimson 1990), all of which have influenced our thinking.

Our treatment of features is statistical and inductive. We build a degree of in-
variance into elementary, binary features and then learn those conjunctions which are
likely on object instances rather than having any other a priori distinguished prop-
erty. The idea is to make the conjunctions “decomposable” relative to the statistics of
the object class. The induction process does not utilize a background model (such as
the minimax entropy model proposed in (Zhu, Wu & Mumford 1997)) or samples of
backgrounds and confusions (as in (Sung & Poggio 1998) and (Rowley et al. 1998)),
both of which might improve discrimination.

We have not appealed to general theories for hypothesis testing (for instance
likelihood ratio tests based on models for Py and P;) or for inductive learning (for
instance structural risk minimization (Vapnik 1996)) or for feedforward classifiers
((Baum & Haussler 1989),(Devroye, Gyorfi & Lugosi 1995)). Instead, the global form
of the detector is dedicated to the visual selection problem; also, each estimated
parameter has an explicit interpretation (correlation or quantile) and is decoupled

from the others, which renders training feasible without a large database. The generic
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component of the learning is the concept of a decomposable arrangement, which might
be of interest in other domains; see (Fleuret 2000) for some remarks about natural
language and cortical function.

How would this approach extend to detecting a truly three-dimensional object,
or a more complex one (e.g., a cat) or to detecting many objects simultaneously?
We don’t know. Obviously there are more degrees of freedom in imaging a 3D or
highly deformable object. But divide-and-conquer is a very powerful strategy, and can
certainly be pushed a good deal further. Even in searching for a cat, perhaps enough
efficiency can overcome the combinatorics - the sheer number of presentations and cat-
like things - and more general pose hierarchies could be generated automatically based
on feature counts. Compared with faces, many more confusions might be kept around
for many more steps, and eliminating all of them might require on-line optimization
and contextual analysis. However, since this would only occur in few places, detection
would remain computationally efficient. As for detecting multiple objects, perhaps
the key issue, at least in our framework, is “reusable parts” - representing different
objects with the same arrangements whenever possible. For example, one might build
a detector for a “new” object at some subset of poses from the detectors already built
for other objects in various subsets.

Finally, in defense of limited goals, nobody has yet demonstrated that objects from
even one generic class under constrained poses can be rapidly detected without errors
in complex, natural scenes; visual selection by humans occurs within two hundred

milleseconds and is virtually perfect.
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Appendix A: Proof of Theorem 1
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Recall that the bound in question is Py(X4 = 1) > minj<;<y Pa(X; = 1) p'°82%. The
result is evident for k = 1. Let £ = minj<;<y Pr(X; = 1) and let A(k) = A(A, k).
Suppose (4) is true for all £ < n. Then for any 4,5 < n with i < j < i+ 1 and for
any B € A(i), C € A(j) with BUC € A(i + j), we have

P\(Xpuc=1) > p-/Pr(Xp=1)-Py(Xp=0)-Py(Xc=1) - P\(X¢c =0)
+PA(XB = 1) . PA(XC = 1)

Define o = log, i and § = log, j. Since PA(Xp =1) < s and PA(X¢ =1) <

7

N =

1
2

and z — z(1 — ) is increasing on [0, ] :

PA(Xpuc =1) 2 p-VE p*(1=E-p*) & pP(1-€-p7)+&-p* &0
a+B8

> E.op 2 L A—E-p2)-(1—€-p8) + £2.pth

Since 8 > «, we have 1 — £p% > 1 — £p® and hence:

PAXpoc=1) > &-p 5 /(T =€-p2)- (1€ po) + €. po*F
> £ pE (1 pt) + 82
— 5.1)#“.(1_5.1)&_;_5.,0#*1)
> £ p L (T (0 7))

Now 72 > 1, 7 < i+ 1 implies 5 < 47 and hence log, j < log, 7 + 2. It follows that
B<a+2and p™3*~1 > p®. As a result,

atf
Py(Xpuoc=1) > &-p2 T

By the concavity of u — log, u :
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+J

logy ¢ + logy, j { o
82T 082] + 1 <log, (T) + 1 < log,(i + j),

2
and therefore

PA(Xpue =1) > & plelt)

To conclude the proof, if (4) is true for every k¥ < n, and if A € A(n + 1),
then if n 4+ 1 is even (respectively, odd), 3B € A(%), C € A(%) (respec-
tively, 3B € A(%), C € A(} +1)), with A = BUC and p(B, C) > p. Hence,
Py(Xa=1)= Py(Xpuc =1) > £ plos2(ntD),

Appendix B: Error Rates

We justify the statement that our detector F' minimizes the false positive error
rate among all false negative zero detectors. To simplify matters, let us suppose that
P(I) > 0 for every I € T; it follows that Py(I) > 0 for every I € Z,, the set of
images containing an object with pose in A. Let f : Z — {0, 1} be any detector and
recall that «(f) is the false negative error Py(f = 0). Then a(f) = 0 if and only if
Zr C {f = 1}. In particular, the condition I' C {f = 1} implies a(f) = 0 because
I € A" C A implies that fy(I) = 1 (since fp is an invariant test for A) and hence
Ir CT.

Suppose f depends on I only through the family of tests {f,;(I)}. Suppose fur-
ther that every possible set of test values {f,,;(I)} € {0, 1}>L» consistent with I € T
is realized by some object image I € Zr. Then the condition I' C {f = 1} is also
necessary for a(f) = 0. In other words, f has zero false negative error if and only
if f(I) = 1VI € T'. Consequently, the smallest false positive error is achieved by
setting f(I) =1 if and only if I € T, i.e., choosing f = F.

Appendix C: Mean Computation
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Figure 20: The vine V' is a rearrangement of V' which has lower cost if 7,1 < %,,.
g g +

Consider first detecting a target, represented by a single conjunction of attributes,
versus a background hypothesis which is a priori far more likely. For example, we
must separate Napoleon from all other prominent historical figures. Let fo,..., far
be the binary random variables corresponding to the attributes; thus the target is
represented by [ {fn = 1}. We test sequentially. Background is declared upon the
first negative test and hence all the tests are eventually performed when the target is
present. This procedure is represented by the labeled vine V' in Figure 20 where i,
is the index of the m’th test performed.

Clearly all such procedures have no false negative error and the minimum possible
false positive error based on the given attributes. We therefore seek the least expen-
sive V in terms of mean computation. Since the background hypothesis is assumed
dominant, the mean is computed relative to Fy. Suppose the tests are independent
under P, with

Py(frn =0) =B, m=0,..., M.

Thus 1 — f,, the incidence in the background population. We can suppose (by rela-
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beling the attributes) that
0<Bo<pi<---<PBu<l (7)

Let cg, ..., cpr denote the costs. The cost of V', denoted C(V), is the sum of the costs
of the tests performed before reaching a terminal node, and hence a random variable.
The mean cost can be computed by summing, over all internal nodes ¢ of V', the cost

of the test at ¢ times the probability of reaching ¢, yielding:

M m—1
Eo(C(V)) =i+ ) cin [ [ (1= 8s).
m=1 =1

If ¢,, = 1, the mean cost is simply the average number of tests performed. The
best procedure is then ¢,, = M —m, which proceeds from rare to common. In this case
the false positive error is clearly HTA;I:O(I — Bm). Notice that under the independence
assumption, a background instance can land in the all “1” leaf of the vine together
with the object.

However, equal costs is not realistic. General tests (common attributes) should
be inexpensive to test whereas dedicated tests (rare attributes) should be costly. For
instance, if the cost behaves like an (approximate) code length, then ¢, ~ —log, (1 —

Bm)- Suppose, in fact, we assume that ¢, = ®(5,,), where
&:[0,1] —[0,1], ®(0) =0,

and @ is strictly increasing and convex.

Proposition: Under the above cost structure, the best strategy for detecting a single

congunction of attributes is i,, = m, which is coarse-to-fine in likelihood.

Example: The best procedure to check for Napoleon is then deceased? — general?

— Corsican?

Proof: Let V denote the vine in Figure 20. Suppose V is optimal but that 7, # m
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for some m. Then 4,1 < %, for some n. The mean cost of V is

B(CV) = cot Y o []0-5i)
+ ¢, (U=Bi) (L= Biny)) + Cingy (L= 63) - (1= Biy))
+ Z Ci H(1 - ﬂll)

Let V' be the same vine as V, but with the positions of f;, and f; ,, reversed, as in
Figure 20. The mean cost of V' has a similar expression, with the same first and last

terms, but with the middle term replaced by

Cinpy (1= B3y) - (1= Biny)) + i, (1= Bi) - (1= Biusy) (1 = Binyy)) -

Therefore

Ey(C(V)) = Eo(C(V") = ¢, (1= Bi) -+ (1= Biner)) + Cia (1= Bir) -+ (1 = Bi,)
= Cippq ((1 - 611) e (1 - /Bin—l))
— ¢, (1=Bu)--- (=B, )1 = Bi))

n—1

= (Cinﬂin_u - Cin+1ﬂin) H(1 - /B'Ll)
I=1
> 0.

The last inequality results from convexity and contradicts optimality. Hence 7,,, = m
for all m.

Finally, consider a corresponding model for a disjunction of conjunctions, and the
corresponding optimality of 7* among all binary trees in 7 which represent f. As for
the cost structure, for T € T, let B; denote the event of reaching node t. The cost
C(T)of TeTis

C(T)=> IpC
¢

where the sum is over all leaves of 7" and C} is the sum of the costs along the branch
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from the root to t. The mean cost is
Eo(C(T)) =Y Py(B)Ci = Po(Bs)em,
t S

where the second sum is over all internal nodes of T and the test at node s is (ms, ls).

The hypotheses H in Theorem 2 refer to the following three assumptions:
o The tests are conditionally independent under Py.

e The distribution of fm, depends only on m, with B, = Po(fm, = 0) and the
ordering in (7).

o The cost of fm, depends only on m, with ¢, = ®(5,,) and ® as above.

Notice that (7) is now a genuine assumption.
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