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Abstract Transfer learning has been studied in multiple domains
and under various perspectives. Many works address the
The vast majority of transfer learning methods proposed issue of what to transfer (sampled],[ feature represen-
in the visual recognition domain over the last years ad- tation [23], model parametersip, 29, 31]), some focus
dresses the problem of object category detection, assumingn how to transfer (generative approach&s P9, boost-
a strong control over the priors from which transfer is done. ing [36], KNN [27] and Support Vector Machine (SVM)
This is a strict condition, as it concretely limits the use of [10, 31]), while others concentrate on how to avoid negative
this type of approach in several settings: for instance, it transfer, evaluating when and how much to transfer (differ-
does not allow in general to use off-the-shelf models as pri- ent source selection approachés][or methods to mea-
ors. Moreover, the lack of a multiclass formulation for most sure the task relatedneskl]). Some knowledge transfer
of the existing transfer learning algorithms prevents gsin strategies propose to exploit sets of unlabeled target sam-
them for object categorization problems, where their use ples 23, 24] or alternative sources of extra information as
might be beneficial, especially when the number of cate-attributes 2, 17].
gories grows and it becomes harder to get enough anno-
tated data for training standard learning methods.
This paper presents a multiclass transfer learning al-
gorithm that allows to take advantage of priors built over

different features and with different learning methodsitha the form of imposing the same feature representation for all

the one used for learning the new task. We use the pr'orspriors and for the new target class B1]. These constraints

as experts, and transfer their outputs to the new incoming po .o me particularly strict when the target problem is multi
samples as additional information. We cast the learning class P5, 30]

problem within the Multi Kernel Learning framework. The o _ _ )
resulting formulation solves efficiently a joint optimizat The contribution of this paper is a multiclass transfer
problem that determines from where and how much to trans-€arning algorithm from unconstrained priors. We assume

fer, with a principled multiclass formulation. Extensive e 0 have no control on the features from which prior mod-
periments illustrate the value of this approach. els are learned, nor on the learning methods used to build

the corresponding classifiers. This is achieved by using

the prior knowledge as experts evaluating the new incom-
1. Introduction ing data and transferring their confidence output. These

outputs are used to augment the feature space of the new

The visual recognition community has shown a grow- {arget data. The learning process is defined solving an op-

ing interest in transfer learning algorithms in the last few timization problem which considers both from where and
years. Indeed, this type of algorithms allows to exploiopri  how much to transfer using a principled multiclass formu-
knowledge when learning a new class, which reduces thejation. We model our learning algorithm using the struc-
need for annotated training data. As the frontiers in object ral risk minimization principle, with a group norm regu-
categorization move from systems able to categotire  |arization term which allows to tune the level of sparsity in
objects €.g Caltech256 [9]) to systems aiming to recog-  the domain of the prior models. We show that it is pos-
nize 10* categoriesé.g ImageNet §]), there is a growing  sible to cast the problem within the Multi Kernel Learn-
demand for techniques able to learn robust categorizationing (MKL) framework, and to solve it efficiently with off-
models from few labeled samples. the-shelf MKL solvers. We build on recent work] that

*Luo Jie and Tatiana Tommasi contributed equally to this pape S.0|Ves the. PrOblem in the primal, reSUltin_g in a computa-
TPrimary contacttatiana.tommasi@idiap.ch tionally efficient method that scales well with respect te th

As diverse as these approaches are, they all assume a
strong control over the priors, whether in the form of con-
straining how the prior models are buiitd, 31], or in the
way of preserving the priors training samplés §], or in




number of priors. We call the proposed method Multi Ker- 1

nel Transfer Learning (MKTL). C’@
We performed thorough experiments on two databases,

studying the behavior of the algorithm in three differe si
. . . . - . New Models

uations: (1) in the object category detection scenaridy wit WO Prlor Models
priors and new models learned using the same features and ﬁ A
learning methods; (2) in the multiclass object categoiorat .-

scenario, with limited priors and few annotated samples for

the target class, where priors and new models are learned £ _=zn I _sks | _sto ]
using different algorithms and features, and (3) in the same ‘”w’l ‘”“'A)l ‘”“'B’l ‘”"’C)l
scenario and setting described in (2), but scaling w.rg. th

number of available priors and w.r.t. the number of labelled s(*.&&) =C >

samples for the new classes. For all these experiments, we
compared against an existing state of the art transfer4earn F19ure 1. Agraphical representation of how to use the ostfpam
ing method, and baseline algorithms designed by us, whichglﬁepvcgggdels as auxiliary features when computing toeesof
use (or not) the available priors. Results clearly inditiase '

MKTL outperforms all the other considered methods, in all

the experimental settings described above. Moreover, it isThe Transfer Learning Framework. We are interested
able to boost significantly performance when relevant prior in the task of learning a classifier fdr’ categories, dif-
are available, taking advantage of the principled muléigla ferent from theF’ categories already known (prior knowl-

formulation. edge). Given the new training sét;, y;}¥ ,, traditional
In the following we introduce the notation and the trans- supervised learning methods,g SVM, minimize an up-
fer learning framework used in the paper (sect®n Sec- per bound of the generalization error, without taking advan

tion 3 presents the learning algorithm, discusses its prop-tage of the existing modelg. However, when the number
erties and its connections and advantages w.r.t. existingof training samples is small, this upper bound may become
approaches. Sectioh describes the experimental setting Vvery loose and the learned model becomes unreliable. One
adopted in the paper and reports on the obtained results. way to improve performance is to exploit existing priors.
Here, we propose to incorporate the predictions of prior

2. Problem Definition knowledge models with the training samples as auxiliary
features. In addition to the training samplg, we also
This section introduces formally the notation and the gather the scoreg,(z;, 2), z = 1, ..., F, predicted by the

transfer learning framework used in the paper. We indicate prior models. In this paper, we focus on the standard linear
matrices and vectors with bold letters, and ast indicate model. Therefore, when learning a new category the score
the vector formed by the concatenation of fieectorsw?, function is:
hencew = [w!, w?,-- -, w].

S(:B, 1/) =w- d’(mv 1/) =w®. ¢(0)(m7y) (2)

Prior Knowledge. _Con5|der the scenario vv_h_ere we kn_ow + Z w¥?) . (b(y,z) (sp (2,2) )
F(F > 2) categories, modeled via a classifier which is a
functionf : X — Z, whereX is the input feature space. In

the binary cas& = {—1,+1}, while for multiclass prob-  wherew) is a hyperplanep()(-,-) : X x Y — H is the

z=1

lemsZ = {1, ..., F'}. Without loss of generality, we con- joint feature mapping functior3[f], which maps the sam-
sider a functionf of the following form: ples into some high, possibly infinite dimensional space.
Here,s, (x, z) is the score of labeled as class predicted
f(z) = argmax sp(x, 2) by the prior models.
=€z We use the indef to indicate the feature mapping func-

wheresy(x, 2) is the value of the score function when the tion ¢(”) (x,y) for the original input features: and their
instancer is assigned to the class The score functioncan  corresponding model parametars?). The indices(y, z)

be interpreted as a measure of how confident the classifier icorrespond to the feature mappingf(x, z) to they-th
about assigning the labelto the instancec. In the case of  new class, wherg = 1,...,F andz = 1,...,F. In
binary classification, the function can be further simplifie other words, given the scotg(z, z) produced by a prior,
as f(z) = sign(s(z)). In the rest of the paper, we will w(¥-?) represents the contribution of theth prior model
only describe our model for the multiclass situation, as its in predicting thate belongs to clasg. Intuitively, if prior
modification to the binary case is straightforward. knowledge of a bicycle gives a high score to images of a



motorbike, this information may also be useful in the score

function of motorbikes, since the two classes share com-
mon visual properties. Therefore, we might expect that the

model will give to this prior knowledge a higher weight. On

3. Multiple Kernel Transfer Learning
3.1. Multiple Kernel Learning

The MKL algorithm was first proposed ]} It solves a

the contrary, we expect lower weights for classes which arejoint optimization problem while also learning the optimal

not very relevant, such as dogs. Figdr#lustrates the ap-

weights for combining the kernels. This method is theoreti-

proach when computing the score for one class. Again, thecally sound, and it gives the possibility to integrate diéfet

predicted label is the class achieving the highest score.
Ideally, we would like to build the auxiliary feature rep-

data representations in a principled manner. The original
MKL uses al; norm regularization to induce sparsity in the

resentation using all the prior knowledge we have, and letdomain of the kernels. Recently, it has been extendég to

the learning algorithm decide automatically from where to

norm regularization in16, 21] for tuning the level of spar-

transfer and how much to transfer. Nevertheless, from asity with the additional parameter This leads to better

machine learning point of view, the more priors are consid-
ered, the higher is the risk for overfitting, especially when
the number of training samples is limited. Moreover, among
the I prior models, we expect only few of them to be rele-

vant w.r.t. a specific new class, while the rest can even add

noise to the problem producing negative transfer. Both fac-

tors need to be taken in consideration when designing the

learning algorithm.

Learning the Objective Function. The supervised learn-
ing optimization problem here is to find the modeling pa-
rameterw that minimizes the structural risk:
N
min Q(w) + C§f (W, x;,yi) ,

()

whereQ(w) is a regularizer which avoids overfitting; is

the regularization coefficient that controls the bias-aace
tradeoff, and¢ is some convex, non negative loss func-
tion. As stated above, we would like to encourage spar-
sity on the level of prior models, such that out of all
the models, only a few of them are actually taking part
in the scoring function. For this purpose we select the
squared?2, p) group norm B7] as our regularizef(w) =

2
—_ !
$1@13, = 3 | [l ® 2, oDl ™|

with p € (1,2]. Eachw(¥-*) forms its own group, and min-
imizing () corresponds to minimize the norm of each
w() jointly. The parametep allows to tune the level of
sparsity on the norms — increasing ipifs close to 1.

Loss Function. Our learning problem is flexible, and we
can use any convex Lipschitz loss function. For the binary
case, we choose the most popular hinge loss:

o (’U_J,.’B,y) = |1—y’lf)-g5(:13)|+, Q)

where|t| is defined asnax(t¢,0). For the multiclass case,
we use the following loss functior] 37]:

EMC (’lIJ,iL‘,y) = n}ax|1 —’LTJ((]_S(EL‘,y) —(;_S(w,y’))|+ . (4)
y'#y

This function is convex and it upper bounds the multiclass
misclassification loss.

performance when the problem is not sparse. By using a
generic group norm and a generic convex function,/the
norm MKL optimization can be written as:

N

A S Z _

H'}II)H 5”71)”%,17"'0 g(wvmiayi)v
i=1

(5)

wherew = [w!, w?,---,wX], andK is the number of

kernels. Wherp = 1, this formulation is equivalent to the
1, norm MKL optimization problemT], and a sparse solu-
tion is obtained by solving it. However, this problemis very
difficult to optimize due to the non smooth nature of the
norm. It has been shown that wheris larger than 1, the
problem 6) becomes much easier to optimiz&]. Mean-
while, whenp tends to 1, the solution still gets extremely
close to the sparse solutionpf= 1.

3.2. Multi Kernel Transfer Learning

The original learning problen®} can be converted into
an[,-norm MKL, which can be solved with off-the-shelf
implementations16, 21]. To transform R), we first set

B = [w® D, .. @) L )]
and
é(mvy) = [¢(0)7 ¢(171)(Sp(m71)1y)7 Tty
¢(y7Z)((SP(maz)ay)7 Tty (b(F,F)(SP(m?F)vy)] .

Therefore, in total, we will havéF' x F’ + 1) feature map-
ping functions¢()(-,-), and the same number of kernels
K ((z,y). (@'.y) = ¢ (z.y) - ¢/ (,y). This defini-

tion includes the particular case of trainifg different hy-
perplanes, one for each new class. In fact, we have that
) (z,y) is equal to

O]a

¢(0)($,y) = [Oa 7011/](0)(1")107"' ) (6)
——

Y

wherey(9)(-) is a transformation that depends only on the
data. Similarly,w® will be composed by’ blocks, with



each block corresponding to the hyperplane for each class3.4. Comparison with Existing Methods
as used in{1]. The feature mapping function for theth

prior model output can now be written as: In this section we briefly discuss other related existing

approaches, emphasizing the connections and differences
between them and our method.

( ) [07"'7¢(Sp(m72))7"'70]7 Ify:y/
(@, y) = g ) Using model outputs as auxiliary features. The idea of
0 . otherwise using the output of other classifiers as basic feature repre-

sentation has been well-explored in various Al domains. It
Again, w¥"*) will be composed by’ blocks. However,  recently gained popularity in the computer vision commu-
with this construction, all the blocks af(¥"-*) are0 except nity, thanks to a large amount of annotated object image
for they/-th block. Hencew(¥'*) only appears in the score  datasets that become available on the web. Several papers

functionss(x, y’) predicting ifz belongs to the clasg. demonstrated that the outputs of object detectdi vi-
. ) sual attributesT2, 17] and semantic visual concepts, 35|
3.3. MKL Solver and Efficient Implementations can be used to define a good feature representation and to
We solve the MKTL problem using the OBSCUREI] improve recogniti_on_performance. Our transfer Iegrni.ng ap
framework. OBSCURE is a fast stochastic subgradient de-Proach follows this line of thoughts. The novelty lies in us-
scent algorithm which solves tig norm MKL problem in ing the outputs of object classifiers as additional feateype r

the primal. Its training complexity is linear in the numbéro  "€séntations combined with sample features from the new

training examples. It has also been proven theoreticadly th  {arget class. This makes it possible to exploit these ideas
OBSCURE has a faster convergence rate as the number owithin the transfer learning framework. Moreover, we dif-
kernels grows, which somehow mitigates the problem that fér from these methods, as we use prediction outputs from
the number of kernels grows linearly with the number of Models of similar object categories.§, when transfers
priors. Moreover, the framework minimizes the primal ob- from blcycl_e to motorbike). This is in contrast with, _for in-
jective function directly, even though it uses Mercer késne ~ Stance Object Banki[] where the output of semantic part
It makes the learning algorithm more memory and compu- détectors&.g, sky, tree) are used.
tationally efficient, when we can write the explicit form of ~ Mostworks [L2, 17, 32, 35] use features computed from
feature mapping)(x) (e.g a linear kernel or polynomial the entire image. Notaply different, Object Barik]] uses
kernel with a low degree). a localized representation where features are extracted at

In this paper, we will only consider a linear mapping different s_patial pyrami_d levels. This is more suited_for
functiony(z) = z (i.e. linear kernel) for the scores of prior  "€Presenting cluttered images composed of many objects,
models. Therefore, the algorithm does not need to use kerSuch as nature scenes. Although in our experiments we
nel caching for the extré¥ x F’) kernels coming from the alsg use outputs computed from tht_a entire images, the al-
prior knowledge. Similarly, the algorithm could also store 90rithm we propose can handle various multi-dimensional
w®2) directly in its primal representation. Hence, com- fépresentations,g, representations like Object Bank._Fur—
pared to the original supervised learning problem without thermore, MKTL takes advantage of the MKL machinery,
prior knowledge, the algorithm will us®(F x F') extra which allows to group freely information from different un-
memory space, and additional computational complexity at constrained sources including the new training data irfto di
each iteration is als®(F x F’). In the experiments we ~ferentkemels. o . .
modified the OBSCURE algorithhto incorporate the aux- Finally, MKTL has a principled multiclass formulation.
iliary prior features and learn them efficiently, using bath ~ Each class learns from which auxiliary features to transfer
binary and a multiclass loss function. For the binary ver- N & joint optimization problem. This multiclass formula-
sion, we also modified the algorithm to obtain a weighted tion could be generalized to other similar problems, such
version for unbalance data][ which considers a different @S those described above. It also allows to define different
value ofC for positive and negative examples. kernels for the new and the prior knowledge.

The value of the parametgris usually defined through ) ]
cross-validation, and its optimal value depends on the Multi Model Knowledge Transfer (Multi-KT) [ 31]. = A
sparseness of the data. According to the theoreniiini transfer learning algorithm close to ours is Multi-KT, whic
is also possible to setequals Foﬁolg% to get a conver- m?dL'f'edt tShe b2 sqsu\?’\r/le Ef)m:_ refgulatr_lzer n tlge_ c_Ias?E
gence rate that depend logarithmically on the total number®@ L€ast->quare- objectve tunction, constraining

of kernels, which is denoted by. With this setup o, we ~ N€W hyperplanev to be close to some of the hyperplanes
have only one free parameter u’ of the F' prior models. Its regularization term can be

written as||w — Zle Bu?||?, wheres? is a parameter to
Lavailable athttp://dogma.sourceforge.net/ be learned which defines the reliability of known models



http://dogma.sourceforge.net/

for the new learning problem, subject to the constraint that the role of the prior models in the performance. For exam-
IB]l2 < 1. The algorithm is binary, and its final decision ple, if the performance of all the prior models is very low
function for a given sample can be written as: compared to No-Transfer, we may expectto see an improve-
ment in performance relatively small compared to standard
supervised learning, and vice versa. This kind of baseline
has often been ignored in previous transfer learning litera
ture. Here we argue that it should be considered as an oblig-
This is very similar to the binary version of the score func- atory competitor, since sometimes using the prior models
tion defined in {). However, Multi-KT is solved based on alone could lead to higher accuracy.

two separate optimization problems, while our algorithm  [Multi-KT] We also compared against the Multi-KT
finds both the best hyperplane’s parameter and the weightsransfer learning algorithm. This method assumes that all
to be assigned to each prior knowledge model in a joint op-the prior models and the new model use the same type of
timization process. Moreover, Multi-KT requires that each feature descriptors and learning method. Thus, for Multi-
prior modelw is constructed using the same type of clas- KT, we did train all our prior models with the same fea-
sifier of the new model. All the models (priors and new) ture descriptors and kernel parameters using SVM classi-
must also use the same type of feature descriptors. On thdier. Since this algorithm has been presented only in a binary
other hand, MKTL has neither of these constrains. Itis ca- version, we implemented the multiclass extension using the
pable ofheterogeneous transfer from unconstrained priors 1-vs-All scheme.

we can freely combine different learning methods and dif- [Average-TL] MKTL learns the weights to combine the
ferent features to boost performance. Finally, Multi-KThca outputs of each prior models with the new knowledge repre-
not be extended to principle multiclass formulation using sentation. Thus, a natural baseline is to consider the-infor

F
s@) =w-o(@)+ 3 Ful - o).

the multiple class loss functiaf'°, mation coming from the priors and the new knowledge as
) equally relevant. Thisis equivalent to train a SVM classifie
4. Experiments using the average of all the available kernels. This method

We present here three sets of experimédesigned for often performs as 990d as many MKL algorithrs][
studying the behavior of MKTL: (a) in the object category ~ FOr all the baseline methods, we use the LIBSVH |
detection scenario, with priors and new model learned us-Package for training and testing the SVM classifier. The

ing the same features and learning methods (Sedtity regularization parametéer is selected from the same range
(b) in the multiclass object categorization scenario, with @S MKTL, and the best results are reported. For No-Transfer
limited priors and few annotated samples for the target @nd Average-TL, we use the RBF kernel.
class, where priors and new model are learned using dif-
ferent algorithms and features (Secti®R), and (c) where
the problem is again multiclass, but scaling w.r.t. the  We consider the same binary experimental setup pro-
number of available priors and w.r.t. the number of la- posed in B1][Section 5.3] on a subset of 30 classes plus the
belled samples for the new classes. In all our experiments background class extracted from the Caltech-256 database
the regularization parameter is selected from the set [15). Here we just repeat briefly the experimental proce-
{0.1,1, 10,100, 1000}, and the parameteris chosen from  dure, for a detailed description of the setup we refer the
the set{1.01, 1.05,1.10,1.15, 1.20, 1.25, 1.30, 1.40, 1.50}. readers to the original paper. The task is to recognize if a
We compare MKTL against the following baselines: test image belongs to the target object class or inatlfe-
[No-Transfer] It corresponds to the standard supervised longing to a pre-defined background class). In turns, a small
learning task without considering prior knowledge. We number of labelled training examples are available for-a tar
train SVM classifiers using the 1-vs-All scheme for the mul- get object class and all the 29 remaining classes are used
ticlass extension. Ideally, the performance of a transfer for training the prior models. We use the same four image
learning algorithm should not be worse than this baseline, descriptors as1] and combine the features through con-
to avoid negative transfer that might hurt performance. catenation. In the experiments, the number of negative ex-
[Prior-Features] We also test the performance when us- amples are far larger than the number of positive examples
ing only the outputs of prior models as feature descriptors.in the training data, leading to an unbalanced data prob-
We concatenated the outputs of the prior models into a vec-lem. This is very common in the object category detec-
tor representation, then use a linear SVM classifier to testtion scenario, and a popular solution to it is to give differe
their performance. This idea is similar to the classemes fea importance weights to the positive and negative examples
ture proposed ingZ]. This baseline will help us understand [31]. We modified our algorithm for this purpose. Here the

h . + — + -
2The code for MKTL and all the scripts used for the experimanésavailable on- WelghtS are defined to be™ = N /N .?‘nd w- =1, .
line http://www.idiap.ch/ ~ttommasi/source_code_ICCV11.html . whereN T andN ~ are the number of positive and negative

4.1. Binary Transfer Learning
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samples. Both the normalb(" = w~ = 1) and weighted  average of the RBF kernels with 1-vs-All extension. In the
MKTL are considered in our experiments. end we use a RBF kernel for the new training images de-
The average results of all the 30 categories as well asscribed with PHOG 4] features. They parameters of the
the average results for each class are shown in Figuhe RBF kernels were fixed to the mean of the pairwise dis-
can be observed that all the transfer learning methods outtances among the samples as donelif) [ 7]. Our choice
perform the No-Transfer approach for different numbers of of features descriptors and prior models are arbitrary,&as w
training samples. Weighted MKTL achieves better perfor- want to show that the prior models could be constructed
mance compared to Multi-KT except for the cases with only using various features descriptors and learning algosthm
3 positive sample. MKTL without weights is slightly worse For comparison, we first consider transfer learning from
at the beginning, but it beats Multi-KT when the number of the first 14 classes (from palm-tree to bulldozer). Then we
positive training sample reaches 15. We expect prior modelsprogressively add the remaining 9 classes (from grapes to
to achieve high accuracy on the target task as both the priorcovered-wagon) to the prior models. Meanwhile, we also
and the target problem consist in distinguishing different experiment withp = 5225 to test if it is possible to set
objects from a common background class. Itis surprising to the parametep automatically (MKTLpau). These results
find that using Prior-Features alone outperforms Multi-KT are reported in Figura [left].
when the number of positive samples grows, which seems  \ve performed similar experiments on the AwA dataset.
to suggest that Multi-KT is not able to combine the prior \ye consider the same 10 test classes i} s new classes
models and the new knowledge as desired (in oder to min-¢, learn, randomly extracting a maximum of 100 samples
imize the error) when the prior models are very strong. On from each class for training and 50 samples for test. The
the other hand MKTL guarantees a performance at least a%emaining 40 classes are used to build prior knowledge
good as what has been transferred. It is also interesting toy5,rces. We use the average of two RBF kernels computed
look into the results obtained from each single class. Kille using color histogram and SURF featur&kfpr describing
whale and duck seem to exploit at the best the priors, while g the prior classes, and train these models using SVM with
fern is the only case where all the transfer learning meth- 1_ys_A|l extension. Again, we use PHOG@] [feature with
ods fail to avoid negative transfer. In most of the classes we; RBE kernel for describing the new training images, and
ob.serve that MKTL is better (or at least equal) than using the~ parameters are computed using the same method dis-
Prior-Features alone. cussed above. These results are reported in Figj[right].

4.2. Multiclass Transfer Learning MKTL clearly shows a gain in performance. It can be
observed that MKTL achieves better results compared to

_ We perform multiclass classification experiments on two No-Transfer, and other baseline methods, especially when
different datasets: subsets of the Caltech-2E5§ and the the number of training samples grows (Figidleft &

Animals with Attributes (AwA) datasetl[/]. Precomputed right], after receiving 5-10 training examples per claas

features are available for both the databases more prior models are used (Figu@left], 23 priors com-

For the experiments on the Caltech-256 dataset, we Con'pared to 14 priors). Here the expecteigher starteffect

sider 9 new classes (F’Onsa'v sunflower, mushroom, horse[26] with few training samples is not as significant as in the
skunk, gorilla, motorbikes, snowmobile, segway), and we pinary case. It suggests that the multiclass problem is sub-
randomly extract a maximum of 30 samples per class for gianiia|ly more difficult compared to the binary object cat-
training and 50 samples for testing. Twenty-three Classesegorization task. Thus, we could expect that we need more

are considered as possible prior knowledge sources, Whichyympjes for each class in order to learn the tasks. Moreover,
can be divided into four groups, plants (palm-tree, cactus, 5ithqygh the performance of Prior-Features alone is rela-

fern, hibiscus), animals (bat, bear, leopards, zebrajwolp ey jow, MKTL still achieves significant improvement in

E'"ﬁ’é‘Whale)’ vehicles (mountain-bike, fire-truck, cside, o rformance by combining the prior outputs with the new
ulldozer) and mix (grapes, tomato, camel, dog, raccoon,nayledge. We also see that the improvement is consistent
chimp, school-bus, touring-bike, covered-wagon), and we gen after receiving 100 training samples per class (Figure
use different feature descriptérfor each group. qu the 4 [right]). This demonstrates theigher asymptotadvan-
first two groups, we concatenate the featu_re descriptors to'tage for knowledge transfeP{]. This advantage is theo-
gether, and train the_: prior mode_ls with Multiclass AdaBoost retically guaranteed by the fact that the knowledge trans-
[2€]. Then, for vehicles and mix group, we compute RBF ¢o hiem is solved in a higher dimensional feature space
kernels for each feature descriptor, and train SVM using the 1,41, the original No-Transfer. The same performance can
SAWA: http://attributes.kyb.tuebingen.mpg.de/ ; Caltech-256: not be eXpeCted for Multi-KT: when the numIEJer Of tr_aining
http://www.vision.ee.ethz.ch/ ~pgehler/projects/iccv09/ . samples grows, the regularization teMm — Zj:l B3 u’ H2
4Plants & Mix: SIFT [L9 and LBP P0; Vehicles: SIFT; Animals: REGCOV looses its relevance and the problem redUces to Iearning

[34], SIFT and V1S+P2]. Since Multi-KT is limited to use only one type of feature
descriptor, we use PHOG][features for all the groups. from scratch.
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Figure 2. (Best viewed in colors and magnification.) Resufftined on the object category detection scenario, whenilgg one out of
30 categories with the rest categories as prior models.sfiilzetion performance is shown as a function of the numbebggct training
images. For each class, we repeat the experiment 5 timggdifierent random permutation. Class by class resultstay@is on the right.

For the sake of clarity, we only plot the results of “No-Tring, “Prior-Feature”, “Multi-KT” and “MKTL (w™ = N~ /N™T)” on these
figures.
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Figure 3. Results obtained on multiclass object categioizacenario. Classification performance is shown as aifumof the number
of object training images. [left] average results obtainsihg subset of the the Caltech-256 dataset; [right] aeeresults obtained using
the AWA dataset. For both datasets, each experimental setapeated for 10 times, and their standard deviationslsoa@ported.

The results for MKTL using the automatic setup of the 5. Conclusions
p parameter is comparable to the results we obtained with
cross validation op. This suggests a possible way to elim- This paper presents a multiclass transfer learning algo-
inate one free parameter in practice when validation datarithm for learning object categories from few examples. The
are not available. We also tested Multi-KT on both datasetsalgorithm uses the output of pre-trained models as extra fea
using the 1-vs-All extension. In this case, Multi-KT does ture inputs, and uses a learning based approach to automat-
not improve over the No-Transfer baseline. One possibleically decide from which prior models to transfer and how
explanation may be that the 1-vs-All scheme may induce much to transfer. The proposed approach has no constraint
confusion when combining the binary results over multiple on the pre-trained prior models and their features represen
classes, as the special optimization scheme used in Multi-tation, as they can be built from different types of learn-
KT does not guarantee that the output for each binary clas-ing methods and using different types of feature represen-
sification problem will be in a similar range. Itis also worth tations. Furthermore, our algorithm uses a principled mul-
mentioning that our learning algorithm is very efficient and ticlass formulation and solves the multiclass problem in a
takes less than 1 minute to finish, on the AWA dataset with joint optimization process. The optimization algorithm is
100 training sample per categories and 40 prior models.  modified from a recently proposég-norm MKL frame-
work which solves the optimization problem in the primal.



It thus scales well w.r.t. the number of prior models. Exper- [17] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning t

iments show that our algorithm outperforms all the baseline

methods, and is able to boost the performance when more
relevant priors are given. Thanks to the principled multi- [18]

class formulation, the performance gain is more significant
for multiclass scenarios, where the tasks are substantiall 1

more difficult than the more studied binary case.
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