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Abstract
We study the problem of object classification when train-

ing and test classes are disjoint, i.e. no training examples of
the target classes are available. This setup has hardly been
studied in computer vision research, but it is the rule rather
than the exception, because the world contains tens of thou-
sands of different object classes and for only a very few of
them image, collections have been formed and annotated
with suitable class labels.

In this paper, we tackle the problem by introducing
attribute-based classification. It performs object detection
based on a human-specified high-level description of the
target objects instead of training images. The description
consists of arbitrary semantic attributes, like shape, color
or even geographic information. Because such properties
transcend the specific learning task at hand, they can be
pre-learned, e.g. from image datasets unrelated to the cur-
rent task. Afterwards, new classes can be detected based
on their attribute representation, without the need for a new
training phase. In order to evaluate our method and to facil-
itate research in this area, we have assembled a new large-
scale dataset, “Animals with Attributes”, of over 30,000 an-
imal images that match the 50 classes in Osherson’s clas-
sic table of how strongly humans associate 85 semantic at-
tributes with animal classes. Our experiments show that
by using an attribute layer it is indeed possible to build a
learning object detection system that does not require any
training images of the target classes.

1. Introduction
Learning-based methods for recognizing objects in natu-

ral images have made large progress over the last years. For
specific object classes, in particular faces and vehicles, reli-
able and efficient detectors are available, based on the com-
bination of powerful low-level features, e.g. SIFT or HoG,
with modern machine learning techniques, e.g. boosting or
support vector machines. However, in order to achieve good
classification accuracy, these systems require a lot of man-
ually labeled training data, typically hundreds or thousands
of example images for each class to be learned.

It has been estimated that humans distinguish between
at least 30,000 relevant object classes [3]. Training con-
ventional object detectors for all these would require mil-
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black: yes
white: no
brown: yes
stripes: no
water: yes
eats fish: yes

polar bear

black: no
white: yes
brown: no
stripes: no
water: yes
eats fish: yes

zebra

black: yes
white: yes
brown: no
stripes: yes
water: no
eats fish: no

Figure 1. A description by high-level attributes allows the transfer
of knowledge between object categories: after learning the visual
appearance of attributes from any classes with training examples,
we can detect also object classes that do not have any training
images, based on which attribute description a test image fits best.

lions of well-labeled training images and is likely out of
reach for years to come. Therefore, numerous techniques
for reducing the number of necessary training images have
been developed, some of which we will discuss in Section 3.
However, all of these techniques still require at least some
labeled training examples to detect future object instances.

Human learning is different: although humans can learn
and abstract well from examples, they are also capable of
detecting completely unseen classes when provided with a
high-level description. E.g., from the phrase “eight-sided
red traffic sign with white writing”, we will be able to detect
stop signs, and when looking for “large gray animals with
long trunks”, we will reliably identify elephants. We build
on this paradigm and propose a system that is able to detect
objects from a list of high-level attributes. The attributes
serve as an intermediate layer in a classifier cascade and
they enable the system to detect object classes, for which it
had not seen a single training example.

Clearly, a large number of possible attributes exist and
collecting separate training material to learn an ordinary
classifier for each of them would be as tedious as for all
object classes. But, instead of creating a separate training



set for each attribute, we can exploit the fact that meaning-
ful high-level concepts transcend class boundaries. To learn
such attributes, we can therefore make use of existing train-
ing data by merging images of several object classes. To
learn, e.g., the attribute striped, we can use images of ze-
bras, bees and tigers. For the attribute yellow, zebras would
not be included, but bees and tigers would still prove use-
ful, possibly together with canary birds. It is this possibility
to obtain knowledge about attributes from different object
classes, and, vice versa, the fact that each attribute can be
used for the detection of many object classes that makes our
proposed learning method statistically efficient.

2. Information Transfer by Attribute Sharing
We begin by formalizing the problem setting and our

intuition from the previous section that the use of attributes
allows us to transfer information between object classes.
We first define the problem of our interest:

Learning with Disjoint Training and Test Classes:
Let (x1, l1), . . . , (xn, ln) ⊂ X × Y be training
samples where X is an arbitrary feature space and
Y = {y1, . . . , yK} consists of K discrete classes. The
task is to learn a classifier f : X → Z for a label set
Z = {z1, . . . , zL} that is disjoint from Y1.

Clearly, this task cannot be solved by an ordinary multi-
class classifier. Figure 2(a) provides a graphical illustra-
tion of the problem: typical classifiers learn one param-
eter vector (or other representation) αk for each training
class y1, . . . , yK . Because the classes z1, . . . , zL were not
present during the training step, no parameter vector can be
derived for them, and it is impossible to make predictions
about these classes for future samples.

In order to make predictions about classes, for which
no training data is available, we need to introduce a cou-
pling between classes in Y and Z . Since no training data
for the unobserved classes is available, this coupling cannot
be learned from samples, but has to be inserted into the sys-
tem by human effort. This introduces two severe constraints
on what kind of coupling mechanisms are feasible: 1) the
amount of human effort to specify new classes should be
minimal, because otherwise collecting and labeling training
samples would be a simpler solution; 2) coupling data that
requires only common knowledge is preferable over special-
ized expert knowledge, because the latter is often difficult
and expensive to obtain.

2.1. Attribute-Based Classification:

We achieve both goals by introducing a small set of high-
level semantic per-class attributes. These can be e.g. color

1The conditions that Y andZ are disjoint is included only to clarify the
later presentation. The problem described also occurs if just Z 6⊆ Y .

and shape for arbitrary objects, or the natural habitat for
animals. Humans are typically able to provide good prior
knowledge about such attributes, and it is therefore possible
to collect the necessary information without a lot of over-
head. Because the attributes are assigned on a per-class ba-
sis instead of a per-image basis, the manual effort to add a
new object class is kept minimal.

For the situation where attribute data of this kind of
available, we introduce attribute-based classification:

Attribute-Based Classification:
Given the situation of learning with disjoint training and
test classes. If for each class z ∈ Z and y ∈ Y an
attribute representation a ∈ A is available, then we can
learn a non-trivial classifier α : X → Z by transferring
information between Y and Z through A.

In the rest of this paper, we will demonstrate that
attribute-based classification is indeed a solution to the
problem of learning with disjoint training and test classes,
and how it can be practically used for object classification.
For this, we introduce and compare two generic methods to
integrate attributes into multi-class classification:

Direct attribute prediction (DAP), illustrated by Fig-
ure 2(b), uses an in between layer of attribute variables
to decouple the images from the layer of labels. During
training, the output class label of each sample induces a
deterministic labeling of the attribute layer. Consequently,
any supervised learning method can be used to learn per-
attribute parameters βm. At test time, these allow the pre-
diction of attribute values for each test sample, from which
the test class label are inferred. Note that the classes during
testing can differ from the classes used for training, as long
as the coupling attribute layer is determined in a way that
does not require a training phase.

Indirect attribute prediction (IAP), depicted in Fig-
ure 2(c), also uses the attributes to transfer knowledge be-
tween classes, but the attributes form a connecting layer be-
tween two layers of labels, one for classes that are known at
training time and one for classes that are not. The training
phase of IAP is ordinary multi-class classification. At test
time, the predictions for all training classes induce a label-
ing of the attribute layer, from which a labeling over the test
classes can be inferred.

The major difference between both approaches lies in the
relationship between training classes and test classes. Di-
rectly learning the attributes results in a network where all
classes are treated equally. When class labels are inferred
at test time, the decision for all classes are based only on
the attribute layer. We can expect it therefore to also handle
the situation where training and test classes are not disjoint.
In contrast, when predicting the attribute values indirectly,
the training classes occur also a test time as an intermediate
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Figure 2. Graphical representation of the proposed across-class learning task: dark gray nodes are always observed, light gray nodes are
observed only during training. White nodes are never observed but must be inferred. An ordinary, flat, multi-class classifier (left) learns one
parameter αk for each training class. It cannot generalize to classes (zl)l=1...,L that are not part of the training set. In an attribute-based
classifier (middle) with fixed class–attribute relations (thick lines), training labels (yk)k=1,...,K imply training values for the attributes
(am)m=1,...,M , from which parameters βm are learned. At test time, attribute values can directly be inferred, and these imply output class
label even for previously unseen classes. A multi-class based attribute classifier (right) combined both ideas: multi-class parameters αk

are learned for each training class. At test time, the posterior distribution of the training class labels induces a distribution over the labels
of unseen classes by means of the class–attribute relationship.

feature layer. On the one hand, this can introduce a bias,
if training classes are also potential output classes during
testing. On the other hand, one can argue that deriving the
attribute layer from the label layer instead of from the sam-
ples will act as regularization step that creates only sensible
attribute combinations and therefore makes the system more
robust. In the following, we will develop implementations
for both methods and benchmark their performance.

2.2. Implementation

Both cascaded classification methods, DAP and IAP, can
in principle be implemented by combining a supervised
classifier or regressor for the image–attribute or image–
class prediction with a parameter free inference method
to channel the information through the attribute layer. In
the following, we use a probabilistic model that reflects the
graphical structures of Figures 2(b) and 2(c). For simplic-
ity, we assume that all attributes have binary values such
that the attribute representation ay = (ay

1, . . . , a
y
m) for any

training class y are fixed-length binary vectors. Continuous
attributes can in principle be handled in the same way by
using regression instead of classification.

For DAP, we start by learning probabilistic classifiers
for each attribute am. We use all images from all training
classes as training samples with their label determined by
the entry of the attribute vector corresponding to the sam-
ple’s label, i.e. a sample of class y is assigned the binary
label ay

m. The trained classifiers provide us with estimates
of p(am|x), from which we form a model for the complete
image–attribute layer as p(a|x) =

∏M
m=1 p(am|x). At test

time, we assume that every class z induces its attribute vec-
tor az in a deterministic way, i.e. p(a|z) = Ja = azK, mak-
ing use of Iverson’s bracket notation: JP K = 1 if the con-

dition P is true and it is 0 otherwise [19]. Applying Bayes’
rule we obtain p(z|a) = p(z)

p(az)Ja = azK as representation
of the attribute–class layer. Combining both layers, we can
calculate the posterior of a test class given an image:

p(z|x) =
∑

a∈{0,1}M

p(z|a)p(a|x) =
p(z)
p(az)

M∏
m=1

p(az
m|x). (1)

In the absence of more specific knowledge, we assume iden-
tical class priors, which allows us to ignore the factor p(z)
in the following. For the factor p(a) we assume a facto-
rial distribution p(a) =

∏M
m=1 p(am), using the empirical

means p(am) = 1
K

∑K
k=1 a

yk
m over the training classes as

attribute priors.2 As decision rule f : X → Z that assigns
the best output class from all test classes z1, . . . , zL to a test
sample x, we use MAP prediction:

f(x) = argmax
l=1,...,L

M∏
m=1

p(azl
m|x)

p(azl
m)

. (2)

In order to implement IAP, we only modify the image–
attribute stage: as first step, we learn a probabilistic multi-
class classifier estimating p(yk|x) for all training classes
y1, . . . , yK . Again assuming a deterministic dependence
between attributes and classes, we set p(am|y) = Jam =
ay

mK. The combination of both steps yields

p(am|x) =
K∑

k=1

p(am|yk)p(yk|x), (3)

so inferring the attribute posterior probabilities p(am|x) re-
quires only a matrix-vector multiplication. Afterwards, we

2In practice, the prior p(a) is not crucial to the procedure and setting
p(am) = 1

2
yields comparable results.



continue in the same way as in for DAP, classifying test
samples using Equation (2).

3. Connections to Previous Work
Multi-layer or cascaded classifiers have a long tradition

in pattern recognition and computer vision: multi-layer per-
ceptrons [29], decision trees [5], mixtures of experts [17]
and boosting [14] are prominent examples of classifica-
tion systems built as feed-forward architectures with several
stages. Multi-class classifiers are also often constructed as
layers of binary decisions, from which the final output is in-
ferred, e.g. [7, 28]. These methods differ in their training
methodologies, but they share the goal of decomposing a
difficult classification problem into a collection of simpler
ones. Because their emphasis lies on the classification per-
formance in a fully supervised scenario, the methods are not
capable of generalizing across class boundaries.

Especially in the area of computer vision, multi-layered
classification systems have been constructed, in which inter-
mediate layers have interpretable properties: artificial neu-
ral networks or deep belief networks have been shown to
learn interpretable filters, but these are typically restricted
to low-level properties like edge and corner detectors [27].
Popular local feature descriptors, such as SIFT [21] or
HoG [6], can be seen as hand-crafted stages in a feed-
forward architecture that transform an image from the pixel
domain into a representation invariant to non-informative
image variations. Similarly, image segmentation has been
proposed as an unsupervised method to extract contours
that are discriminative for object classes [37]. Such pre-
processing steps are generic in the sense that they still allow
the subsequent detection of arbitrary object classes. How-
ever, the basic elements, local image descriptors or seg-
ments shapes, alone are not reliable enough indicators of
generic visual object classes, unless they are used as input
to a subsequent statistical learning step.

On a higher level, pictorial structures [13], the constel-
lation model [10] and recent discriminatively trained de-
formable part models [9] are examples of the many methods
that recognize objects in images by detecting discriminative
parts. In principle, humans can give descriptions of object
classes in terms of such parts, e.g. arms or wheels. How-
ever, it is a difficult problem to build a system that learns
to detect exactly the parts described. Instead, the identifi-
cation of parts is integrated into the training of the model,
which often reduces the parts to co-occurrence patterns of
local feature points, not to units with a semantic meaning.
In general, parts learned this way do generalize across class
boundaries.

3.1. Sharing Information between Classes

The aspect of sharing information between classes has
also been recognized as an interesting field before. A com-

mon idea is to construct multi-class classifiers in a cascaded
way. By making similar classes share large parts of their
decision paths, fewer classification functions need to be
learned, thereby increasing the system’s performance [26].
Similarly, one can reduce the number of feature calculations
by actively selecting low-level features that help discrimina-
tion for many classes simultaneously [33]. Combinations of
both approaches are also possible [39].

In contrast, inter-class transfer does not aim at higher
speed, but at better generalization performance, typically
for object classes with only few available training instances.
From known object classes, one infers prior distributions
over the expected intra-class variance in terms of distortions
[22] or shapes and appearances [20]. Alternatively, features
that are known to be discriminative for some classes can be
reused and adapted to support the detection of new classes
[1]. To our knowledge, no previous approach allows the
direct incorporation of human prior knowledge. Also, all
methods require at least some training examples and cannot
handle completely new object classes.

A noticable exception is [8] that uses high-level at-
tributes to learn descriptions of object. Like our approach,
this opens the possilibity to generalize between categories.

3.2. Learning Semantic Attributes

A different line of relevant research occurring as one
building block for attribute-based classification is the learn-
ing of high-level semantic attributes from images. Prior
work in the area of computer vision has mainly stud-
ied elementary properties like colors and geometric pat-
terns [11, 36, 38], achieving high accuracy by develop-
ing task-specific features and representations. In the field
of multimedia retrieval, the annual TRECVID contest [32]
contains a subtask of high-level feature extraction. It has
stimulated a lot of research in the detection of semantic con-
cepts, including the categorization of scene types, e.g. out-
door, urban, and high-level actions, e.g. sports. Typical sys-
tems in this area combine many feature representations and,
because they were designed for retrieval scenarios, they aim
at high precision for low recall levels [34, 40].

Our own task of attribute learning targets a similar prob-
lem, but our final goal is not the prediction of few individual
attributes. Instead, we want to infer class labels by combin-
ing the predictions of many attributes. Therefore, we are
relatively robust to prediction errors on the level of individ-
ual attributes, and we will rely on generic classifiers and
standard image features instead of specialized setups.

In contrast to computer science, a lot of work in cog-
nitive science has been dedicated to studying the relations
between object recognition and attributes. Typical ques-
tions in the field are how human judgements are influenced
by characteristic object attributes [23, 31]. A related line
of research studies how the human performance in object
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Figure 3. Class–attribute matrices from [24, 18]. The responses
of 10 test persons were averaged to determine the real-valued as-
sociation strength between attributes and classes. The darker the
boxes, the less is the attribute associated with the class. Binary
attributes are obtained by thresholding at the overall matrix mean.

detection tasks depends on the presence or absence of ob-
ject properties and contextual cues [16]. Since one of our
goals is to integrate human knowledge into a computer vi-
sion task, we would like to benefit from the prior work in
this field, at least as a source of high quality data that, so far,
cannot be obtained by an automatic process. In the follow-
ing section, we describe a new dataset of animal images that
allows us to make use of existing class-attribute association
data, which was collected from cognitive science research.

4. The Animals with Attributes Dataset

For their studies on attribute-based object similarity, Os-
herson and Wilkie [24] collected judgements from human
subjects on the “relative strength of association” between
85 attributes and 48 animal classes. Kemp et al. [18] made
use of the same data in a machine learning context and
added 2 more animals classes. Figure 3 illustrates an ex-
cerpt of the resulting 50 × 85 class-attribute matrix. How-
ever, so far this data was not usable in a computer vision
context, because the animals and attributes are only spec-
ified by their abstract names, not by example images. To
overcome this problem, we have collected the Animals with
Attributes data.3

4.1. Image Collection

We have collected example images for all 50 Osher-
son/Kemp animal classes by querying four large internet
search engines, Google, Microsoft, Yahoo and Flickr, using
the animal names as keywords. The resulting over 180,000
images were manually processed to remove outliers and du-
plicates, and to ensure that the target animal is in a promi-
nent view in all cases. The remaining collection consists of
30475 images with at minimum of 92 images for any class.
Figure 1 shows examples of some classes with the values
of exemplary attributes assigned to this class. Altogether,
animals are uniquely characterized by their attribute vector.
Consequently, the Animals with Attributes dataset, formed

3Available at http://attributes.kyb.tuebingen.mpg.de

by combining the collected images with the semantic at-
tribute table, can serve as a testbed for the task of incorpo-
rating human knowledge into an object detection system.

4.2. Feature Representations

Feature extraction is known to have a big influence in
computer vision tasks. For most image datasets, e.g. Cal-
tech [15] and PASCAL VOC4, is has become difficult to
judge the true performance of newly proposed classifica-
tion methods, because results based on very different fea-
ture sets need to be compared. We have therefore decided
to include a reference set of pre-extracted features into the
Animals with Attributes dataset.

We have selected six different feature types: RGB color
histograms, SIFT [21], rgSIFT [35], PHOG [4], SURF [2]
and local self-similarity histograms [30]. The color his-
tograms and PHOG feature vectors are extracted separately
for all 21 cells of a 3-level spatial pyramids (1×1, 2×2,
4× 4). For each cell, 128-dimensional color histograms
are extracted and concatenated to form a 2688-dimensional
feature vector. For PHOG, the same construction is used,
but with 12-dimensional base histograms. The other feature
vectors each are 2000-bin bag-of-visual words histograms.

For the consistent evaluation of attribute-based object
classification methods, we have selected 10 test classes:
chimpanzee, giant panda, hippopotamus, humpback whale,
leopard, pig, racoon, rat, seal. The 6180 images of those
classes act as test data, whereas the 24295 images of the
remaining 40 classes can be used for training. Addition-
ally, we also encourage the use of the dataset for regular
large-scale multi-class or multi-label classification. For this
we provide ordinary training/test splits with both parts con-
taining images of all classes. In particular, we expect the
Animals with Attributes dataset to be suitable to test hierar-
chical classification techniques, because the classes contain
natural subgroups of similar appearance.

5. Experimental Evaluation
In Section 2 we introduced DAP and IAP, two meth-

ods for attribute-based classification, that allow the learn-
ing of object classification systems for classes for, which no
training samples are available. In the following, we eval-
uate both methods by applying them to the Animals with
Attributes dataset. For DAP, we train a non-linear sup-
port vector machine (SVM) to predict each binary attributes
a1, . . . , aM . All attribute SVMs are based the same kernel,
the sum of individual χ2-kernels for each feature, where the
bandwidth parameters are fixed to the five times inverse of
the median of the χ2-distances over the training samples.
The SVM’s parameter C is set to 10, which had been deter-
mined a priori by cross-validation on a subset of the training

4http://www.pascal-network.org/challenges/VOC/
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Figure 4. Confusion matrices between 10 test classes of the Ani-
mals with Attributes dataset (best viewed in color). Left: indirect
attribute prediction (IAP), right: direct attributes prediction (DAP).
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Figure 5. Detection performance of object classification with dis-
joint training and test classes (DAP method): ROC-curves and area
under curve (AUC) for the 10 Animals with Attributes test classes.

classes. In order to obtain probability estimates, we per-
form the SVM training using only on 90% of the training
samples and use the remaining training data as validation
set for Platt scaling [25]. For IAP, we use L2-regularized
multi-class logistic regression with the same feature repre-
sentation as above. This directly gives us an estimate of the
class posteriors p(yk|x) that we turn into attribute posteriors
by Equation (3). Because the linear training is much faster
than the non-linear one, we can determine the regularization
parameters C by five-fold cross-validation in this setup.

5.1. Results

Having trained the predictors for p(am|x) on the train-
ing part of the Animals with Attributes dataset, we use the
test classes’ attribute vectors and Equation (2) to perform
multi-class classification for the test part of the dataset. This
results in a multi-class accuracy of 40.5% for DAP, as mea-
sured by the mean of the diagonal of the confusion ma-
trix, and a multi-class accuracy of 27.8% for IAP. Figure 4
shows the resulting confusion matrices for both methods.
Clearly, this performance is significantly higher than the
chance level of 10%, in particular for DAP, which proves
our original statement on attribute-based classification: by
sharing information via an attribute layer, it is possible to
classify images of classes that were not part of the training
data 5.

Because of the better performance of DAP, in the follow-
ing we will give more detailed results only for this method.
Figure 6 show the quality of the invidual attribute predictors
on the test data. Note that for several attributes performance
is not much better than random (AUC≈ 0.5), whereas other
features can be learned almost perfectly (AUC ≈ 1). This

5Note that, although the train/test split we use is somewhat balanced
with regard to the nature of the classes, the performance for other splits
are comparable: using classes 1–10, 11-20, etc. as test classes and the re-
maining ones as test classes, DAP achieves multiclass accuracies of 33.7%,
42.0%, 32.6%, 34.3%, 33.2% and IAP of 27.6%, 25.4%, 24.9%, 18.6%,
25.6%.

shows the importance of having a large and diverse feature
set. Note also, that even non-visual attributes like smelly
can be learned better than chance, presumely because they
are correlated with visual properties. Figure 5 depicts the
the resulting ROC curves and their area under curve (AUC)
values. One can see that for all classes, reasonable classi-
fiers have been learned. With an AUC of 0.99, the perfor-
mance for humpback whale is even on par with what fully
supervised techniques typically achieve. Figure 7 shows the
five images with highest posterior score for each test class,
therefore allowing to judge the quality of a hypothetical im-
age retrieval system based on Equation (1). One can see that
the rankings for humpback whales, chimpanzees, leopards,
hippopotamuses and raccoons are very reliable, whereas the
other rankings contain several errors. Since all classifiers
base their decisions on the same learned attributes, this sug-
gests that either these classes are characterized by attributes
that are more difficult to learn, or that the attribute charac-
terization itself is less informative for these classes.

To our knowledge, no previous methods for object de-
tection with disjoint training and test classes exist. Typical
unsupervised techniques like clustering are not applicable in
our setup, either, since we want to individually assign class
labels to test images, not only identify groups of similar ap-
pearance within a large collection of test images. For com-
parison, we have therefore implemented a simple one-shot
learning approach: it learns a diagonal covariance matrix
of feature variance from the training classes and uses the
resulting Mahalanobis-distance for nearest-neighbor classi-
fication. Each target class is represented by up to 10 im-
ages randomly taken from the test set. However, this setup
achieves only accuracies between 14.3% for 1 training im-
age and 18.9% for 10 training images, thereby not clearly
improving over the chance level. This shows how difficult
both the problem and the dataset are. To put our results
into a larger perspective, nonetheless, we also compare our
method to ordinary multi-class classification, using the stan-
dard setup of Figure 2(a) with a 50/50 split of test class im-
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Figure 6. Quality of individual attribute predictors (trained on train classes, tested on test classes), as measured by by area under ROC
curve (AUC). Attributes with zero entries have constant values for all test classes of the split chosen, so their AUC is undefined.

humpback whale leopard chimpanzee hippopotamus racoon persian cat rat seal pig giant panda

Figure 7. Highest ranking results for each test class in the Animals with Attributes dataset. Uniquely characterized classes are identifed
well, e.g. humpback whales and leopards. Confusions occur between visually similar categories, e.g. pigs and hippopotamuses.

ages for training and testing. Clearly, the availability of a
large number of training samples from the same classes as
the test data vastly simplifies the problem. With a result-
ing multi-class accuracy of 65.9%, supervised training does
indeed perform better than the 40.5% achieved by attribute-
based learning. However, given the different amount of
training information included, we believe that the difference
in accuracy is not discouragingly large, and that learning
with attributes has the potential to complement supervised
classification in areas where no or only few training exam-
ples are available.

6. Conclusion

In this paper, we have introduced learning for disjoint
training and test classes. It formalizes the problem of learn-
ing an object classification systems for classes, for which no
training images are available. We have proposed two meth-
ods for attribute-based classification that solve this problem
by transferring information between classes. The transfer is
achieved by an intermediate representation that consists of
high level, semantic, per-class attributes, providing a fast
and easy way to include human knowledge into the system.

Once trained, the system can detect any object category, for
which a suitable characterization by attributes is available,
and it does not require a re-training step.

Additionally, we have introduced the Animals with At-
tributes dataset: it consists over 30,000 images with pre-
computed reference features for 50 animal classes, for
which a semantic attribute annotation is available from stud-
ies in cognitive science. We hope that this dataset will fa-
cilitate research and serve as a testbed for attribute-based
classification.

Starting from the proposed system, many improvements
and extensions are possible. Clearly, better designed per-
attribute and multi-class classifiers could improve the over-
all performance of the system, as could a per-attribute fea-
ture selection set, because clearly not all attributes relevant
for a human can be determined from images. For an adap-
tive system that can grow to include new classes, it should
be possible to increase the attribute set without retraining. It
would also be very interesting to remove the amount of hu-
man effort, e.g. by letting a human define the attributes, but
build an automatic system to label the image classes with
the attribute values, possibly using textual information from



the internet. Ultimately, this could even lead to a fully auto-
matic determination of both, the attributes and their values.

A different interesting direction for future work, is the
question how attribute-based classification and supervised
classification can be merged to improve the classification
accuracy when training examples are available but scarce.
This would make attribute-based classification applicable to
existing transfer learning problems with many classes, but
few examples per class, e.g. [12].
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