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Improving Control of Dexterous Hand Prostheses
Using Adaptive Learning

Tatiana Tommasi, Francesco Orabona, Claudio Castellini and Barbara Caputo

Abstract—At the time of writing, the main means of control
for polyarticulated self-powered hand prostheses is surface elec-
tromyography (sEMG). In the clinical setting, data collected from
two electrodes are used to guide the hand movements selecting
among a finite number of postures. Ever since the 60s though,
machine learning has been applied to the sEMG signal (not in
the clinical setting) with interesting results which provide more
insight on how these data could be used to improve the prostheses
functionality. Researchers have mainly concentrated so far on
increasing the accuracy of sEMG classification and/or regression,
but in general, a finer control implies a longer training period.
A desirable characteristic would be to shorten the time needed
by a patient for learning how to use the prosthesis.

To this aim, we propose here a general method to re-use
past experience, in the form of models synthesised from previous
subjects, to boost the adaptivity of the prosthesis. Extensive tests
on databases recorded from healthy subjects in controlled and
non-controlled conditions reveal that the method significantly
improves the results over the baseline, non-adaptive case. This
promising approach could be employed to pre-train a prosthesis
before shipping it to a patient, leading to shorter training phase.

Index Terms—learning and adaptive systems, prosthetics, elec-
tromyography, human-computer interfaces

I. INTRODUCTION

IN the prosthetics/rehabilitation robotics community it is
generally understood nowadays [1], [2], [3] that advanced

hand prostheses are in dire need of accurate and reliable
control schemas to make them easy to use by the patient.
Together with excessive weight and low reliability, lack of
control is the main reason why 30% to 50% of upper-limb
amputees do not use their prosthesis regularly [4], although
the exact factors leading to abandonement of a prosthesis
depends on the age and status of each subject, remaining to
be thoroughly investigated [5].

The force-controlled and polyarticulated hand prosethesis
currently being used in the clinical setting, although not yet
comparable with non-prosthetic mechanical hands, enjoy a
high level of dexterity meaning that they have five fingers and
can potentially achieve an infinite number of configurations,
e.g., the BeBionic hand by RSL Steeper (www.bebionic.com),
Vincent Systems’ Vincent hand (www.handprothese.de) and
the i-LIMB by Touch Bionics (www.touchbionics.com, see
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Fig. 1. Dexterous hand prostheses: (left to right) RSL Steeper’s
BeBionic (reproduced from www.bebionic.com), Vincent Systems’ Vin-
cent hand (www.handprothese.de) and Touch Bionics’s i-LIMB Ultra
(www.touchbionics.com).

Figure 1). Yet, control by the patient is poor, and it is still en-
forced using two surface electromyography (sEMG) electrodes
and complex sequences of muscle contraction impulses; this is
essentially an old control schema enforced since the 60s [6],
[7], [8]. The patient must get acquainted and proficient with
this “language” if (s)he wants to achieve a minimum control
over the prosthesis.

To overcome this drawback, a more “natural” form of
control has been individuated and studied since two decades;
namely, sEMG has been revamped by the application of ma-
chine learning techniques. More electrodes (typically 5+) and
complex statistical classification/regression techniques (e.g.,
support vector machines [9], linear discriminants [10], [11],
neural networks [12]) enable to detect, at least in principle,
what the patient wants to do and to enforce it. The word
“natural” here is still quite a misnomer, as it refers to the
choice among a finite number of predefined hand configu-
rations; but this kind of control is still much more natural
than before, as each posture is achieved by configuring one’s
muscle remnants as they would be if the missing limb were
still there. Recent results on amputees indicate that even long-
term patients can generate rather precise residual activity, to
the extent that there is essentially no statistically significant
difference in the classification/regression accuracy attained by
trans-radial amputees and intact subjects [9], [13].

In this paper we concentrate upon a specific aspect of
hand prostheses control, namely, we try to reduce the training
time, i.e. the time required to perform the adaptation of the
prosthesis itself to the patient. Anatomical similarity among
humans intuitively suggests that good statistical models built in
the past might be proficiently reused when training a prosthesis
for a new patient. This idea cannot be naı̈vely enforced
with standard learning techniques, as shown at least in [14],
where cross-subject analysis (i.e., using a model trained on
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a subject to do prediction on a new subject) is performed
with poor results. We present here a more refined approach
to the problem exploiting adaptive learning in order to boost
the training phase of a hand prosthesis by reusing previous
experience.

We build on our own previous work [15] which proposed a
principled method to choose one among multiple pre-trained
models on a known subjects as source for adaptation, and to
evaluate the right degree of closeness to the target task for a
new subject. This approach was based on an estimate of the
model generalization ability through the leave-one-out error
which was minimized solving a non convex optimization task.
Here we improve the original method into two key aspects:
(1) we constrain the new model, to be close to a linear
combination of pre-trained models stored in the memory of
the prosthesis; (2) the learning process to define from whom
and how much to adapt is now defined through a convex opti-
mization problem avoiding local minima issues. This translates
into a consistent bootstrapping of the control abilities of the
new subject, which can therefore acquire control of the device
within a time range of at least one order of magnitude lower
than what would be achieved without adaptation.

We test our method on two databases. The first is the one
already described in [14], [15], consisting of sEMG, posture
and force signals gathered from 10 intact subjects in various
(controlled, non-controlled) laboratory situations. The second
is the NinaPro database [16], a publicly available database
which contains kinematic and sEMG data from the upper
limbs of 27 intact subjects while performing a total of 52 hand
postures. The benefits are apparent and the perspective is that
of shipping a pre-trained prosthesis which would very quickly
adapt to the patient, with the effect of enabling him/her to a
higher comfort and aid during daily-life activities.

The paper is organised as follows: after reviewing related
work, in Sections II and III we present the method. Section
IV describes the database used, while Section V shows and
discusses the results. Lastly, Section VI contains conclusions
and ideas for the future work.

A. Related work

1) Using sEMG for hand prostheses: Surface EMG detects
muscle unit activation potentials, which tipically present a
quasi linear relation with the force exerted by the muscle to
which the electrode is applied. In the more specific case of
hand prostheses, several electrodes are applied to the forearm
(or stump) while the subject reaches specific hand configura-
tions (postures) and/or grabs a force sensor. The raw sEMG
signal is then preprocessed (filtered, rectified, subsampled);
features are subsequently extracted from it and fed, together
with force values and labels denoting the postures, to a (usually
supervised) machine learning method. Hand postures can be
classified accordingly, and the force applied is predicted using
a regression scheme. The two things can happen simultane-
ously [17]. Up to 12 hand postures [13] have been classified
with acceptable accuracy, and there are strong hints [18], [9],
[13], [19], [20] that with data from trans-radial amputees it
may be possible to achieve similar performance.

Almost comprehensive surveys can be found in [21], [2], [3]
and the most recent results at the time of writing are probably
those exposed in [22], [23], [24] and [25]. The use of sEMG
has been widely explored and a number of possible features
have been extracted and tested with many machine learning
methods.

2) Adaptive learning: One of the main assumption of
machine learning is that the training data on which any method
is learned and the test data on which it is verified are drawn
from the same distribution. However, in real problems this is
not always the case and adaptive learning is used to overcome
the distribution mismatch. In particular transfer learning [26]
and domain adaptation [27] face two aspects of this problem.
The first focus mostly on binary tasks and on the use of
helpful information across different categories (class with
different labels). The second consider the possiblity to exploit
common information among slightly different tasks when the
set of label is the same. By applying domain adaptation, data
collected in different domains can be used together (source +
target) or it is possible to leverage on pre-trained models built
on rich training sets (source) when facing the same problem
in a new domain with few available samples (target).

In the last years, various techniques for transfer learning and
domain adaptation have gathered attention in natural language
processing [28], [29], computer vision [30], [31] and sentiment
classification [32], [33]. Many adaptive methods have been
compared and benchmarked in [29], however most of them are
computationally inefficient because it is necessary to retrain
each time over old source and new target data. An approach
that does not use re-training, based on SVM has been proposed
in [34]. However this technique does not take properly into
account the possibility that the known model can be too
different with respect to the new one due to high variability
among the domains.

3) Adaptive learning on sEMG data: As already stated, any
general-purpose method to augment the prostheses control and
in particular to speed up the training time/aid the collection of
training data is highly desirable. This problem can be casted
in the adaptive learning framework.

One interesting attempt in this direction can be found
in [35], where two adapting methods (one supervised, one
unsupervised) are shown to dramatically outperform a non-
adaptive approach.

The solution of adapting from data collected on different
subjects is adopted in [36]: decoupling between subject-
dependent and a motion-dependent components is enforced
on a limited dataset, and an improvement over the baseline
method is shown. In [37] samples from multiple source
subjects are combined to the target subject samples. When
learning the final classifier on the whole set of data a weighting
factor is added to evaluate the real relevance of each source
with respect to the target task. The sensibility of the method
to this parameter is evaluated empirically, but how to choose
it is left as an open problem.

In [15] we proposed an approach that exploited previously
trained models on known subjects as starting point when
learning on a new one. This method chooses automatically
the best prior knowledge to use and how much to rely on
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it, overcoming at the same time the problems present in
[37] and [34]. Compared with [35] that performs adaptation
during the prediction task, our algorithm defines a way of
boosting the performance in training, i.e. before beginning
the prediction. We propose here to enlarge the approach in
[15], even building over our [31] that shares the same basic
mathematical framework. Specifically we propose a novel
multiclass adaptive learning method able to rely over many
prior knowledge models at the same time, with the aim to
exploit at the best all the available information.

II. DEFINING THE ADAPTIVE MODEL

In this section we describe the mathematical framework at
the basis of our adaptive learning method. We first introduce
the basic notation (Section II-A), then we present our algo-
rithm for online model adaptation from the best known subject
(Section II-B) and how to enlarge it to exploit multiple known
subjects (Sections II-C). We end explaining how to extend the
described approach in the multiclass setting (Section II-D).

In the following we denote with small and capital bold
letters respectively column vectors and matrices, e.g. a =
[a1, a2, . . . , aN ]T ∈ RN and A ∈ RG×N with Aji cor-
responding to the (j, i) element. Moreover, we use a subscript
to indicate a specific column of a matrix: e.g. Ai is the i-th
column of the matrix A.

A. Background

Assume xi ∈ Rm is an input vector and yi ∈ R is
its associated output. Given a set {xi, yi}Ni=1 of samples
drawn from an unknown probability distribution, we want
to find a function f(x) such that it determines the best
corresponding y for any future sample x. This is a general
framework that includes both regression and classification. The
problem can be solved in various ways. Here we will use
kernel methods and in particular Least-Squares Support Vector
Machines (LS-SVM, [38]). In LS-SVM the function f(x) is
built as a linear model w · φ(x) + b, where φ(·) is a non-
linear function mapping input samples to a high-dimensional
(possibly infinite-dimensional) Hilbert space called feature
space. Rather than being directly specified, the feature space is
usually induced by a kernel function K(x,x′) which evaluates
the inner product of two samples in the feature space itself,
i.e. K(x,x′) = φ(x) · φ(x′). A common kernel function is
the Gaussian kernel:

K(x,x′) = exp(−γ||x− x′||2) (1)

that will be used in all our experiments.
The parameters of the linear model, w and b, are found by

minimizing a regularized least-squares loss function [38]. This
approach is similar to the well-known formulation of Support
Vector Machines (SVMs), the difference being that the loss
function is the square loss. Note that, contrary to SVMs, LS-
SVMs do not induce sparse solutions.

This formulation can be easily generalized to the multi-
class classification, where we have g = 1, . . . , G different
classes. Consider one model for each class, wg and bg , that
discriminates one class against the others (one-vs-all). Hence

model g is trained on the binary problem to distinguish
class g considered as positive, from all the others, considered
negative. The predicted class for sample i is then defined as
argmaxg{wg · φ(xi) + bg}.

A key concept that we will use is the one of leave-
one-out predictions [39]. Denote by ỹi, i = 1, . . . , N , the
prediction on sample i when it is removed from the training
set and by `(y, ỹ) a generic loss function that measures
the loss of predicting ỹ when the true label is y. We have
that 1

N

∑N
i=1 `(yi, ỹi) is an almost unbiased estimator of the

classifier generalization error [40], measured using `.
LS-SVMs make it possible to write the leave-one-out

predictions in closed form and with a negligible additional
computational cost [39]. This property is useful to find the
best parameters for learning (e.g. γ in (1)) and it will be
used in our adaptation method. Note that we use the same
general formulation to solve both regression and classification
problems.

B. Model Adaptation from the Best Subject

Let us assume we have K pre-trained models stored in
memory, trained off-line on data acquired on K different
subjects. When the prosthetic hand starts to be used by subject
K + 1, the system begins to acquire new data. Given the
differences among the subjects’ arms and as well in the
placement of the electrodes, these new data will belong to
a new probability distribution, in general different from the K
previously modeled and stored. Still, as all subjects perform
the same grasp types, it is reasonable to expect that the new
distribution will be close to at least one of those already
modeled; then, it should be possible to use one of the pre-
trained model as a starting point for training on the new data.
We expect that, by doing so, learning should be faster than
using the new data alone. To solve this problem we generalize
the adaptation approach proposed in [34] for SVMs: the basic
idea is to slightly change the regularization term of the SVM
cost functional, so that the solution will be close to the pre-
trained one. The optimization problem is [34]:

min
w,b

1
2
‖w − ŵ‖2 + C

N∑
i=1

ξi

subject to ξi ≥ 0, yi(w · φ(xi) + b) ≥ 1− ξi (2)

where ŵ is a pre-trained model and C is a parameter to
trade-off the errors and the regularization. In order to tune
the closeness of w to ŵ, we introduce a scaling factor β
weighing the pre-trained model; also, we use the square loss
and therefore resort to the LS-SVM formulation. In this way
the leave-one-out predictions can be evaluated in closed form,
enabling automatic tuning of β. The optimization problem
reads now like this [15]:

min
w,b

1
2
‖w − βŵ‖2 +

C

2

N∑
i=1

ξ2i

subject to yi = w · φ(xi) + b+ ξi (3)
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and the corresponding Lagrangian problem is:

L =
1
2
‖w−βŵ‖2+

C

2

N∑
i=1

ξ2i −
N∑

i=1

ai{w·φ(xi)+b+ξi−yi} ,

(4)
where a ∈ RN is the vector of Lagrange multipliers. The
optimality conditions can be expressed as:

∂L
∂w

= 0 =⇒ w = βŵ +
N∑

i=1

aiφ(xi) , (5)

∂L
∂b

= 0 =⇒
N∑

i=1

ai = 0 , (6)

∂L
∂ξi

= 0 =⇒ ai = Cξi , (7)

∂L
∂ai

= 0 =⇒ w · φ(xi) + b+ ξi − yi = 0 . (8)

From (5) it is clear that the adapted model is given by the
sum of the pre-trained model ŵ (weighted by β) and a new
model w obtained from the new samples. Note that when β
is 0 we recover the original LS-SVM formulation without any
adaptation to previous data. Using (5) and (7) to eliminate w
and ξ from (8) we find that:

N∑
j=1

aj φ(xj) · φ(xi) + b+
ai

C
= yi − βŵ · φ(xi) . (9)

Denoting with K the kernel matrix, i.e. Kji = K(xj ,xi) =
φ(xj) · φ(xi), the obtained system of linear equations can be
written more concisely in matrix form as:[

K + 1
C I 1

1T 0

] [
a
b

]
=
[
y − βŷ

0

]
, (10)

where y and ŷ are the vectors containing respectively the label
samples and the prediction of the previous model i.e. y =
[y1, . . . , yN ]T , ŷ = [ŵ · φ(x1), . . . , ŵ · φ(xN )]T . Thus the
model parameters can be calculated with:[

a
b

]
= P

[
y − βŷ

0

]
, (11)

where P = M−1 and M is the first matrix on the left in
(10).

We now show that for (3) it is possible to write the
leave-one-out predictions in a closed formula (proof in the
Appendix). Let [a′T , b′]T = P [yT , 0]T and [a′′T , b′′]T =
P [ŷT , 0]T with a = a′ + βa′′, then

Proposition 1. The prediction ỹi, obtained on sample i when
it is removed from the training set, is equal to

yi −
a′i
Pii

+ β
a′′i
Pii

. (12)

Notice that in the above formula β is the only parameter,
hence, it is possible to set it optimally in order to minimize
the sum of the leave-one-out errors `(yi, ỹi), while at the
same time choosing the best pre-trained model for adaptation.
Moreover, a depends linearly on β, thus it is straightforward
to define the learning model which is fixed once β has been
chosen.

The complexity of the algorithm is dominated by the evalua-
tion of the matrix P , which must anyway occur while training;
thus, the computational complexity of evaluating the leave-
one-out errors is negligible, if compared to the complexity of
training. As a last remark, we underline that the pre-trained
model ŵ can be obtained by any training algorithm, as far
as it can be expressed as a weighted sum of kernel functions.
The framework is therefore very general.

C. Model Adaptation from Multiple Subjects
The approach described in the previous Section has a

main drawback: although many prior knowledge models are
available, it uses only one of them, selected as the most useful
in term of minimal leave-one-out errors. Even if the pre-trained
models are not equally informative, relying on more than one
of them may be beneficial. To this goal it is possible to define a
new learning problem which considers the linear combination
of all the known models [31]:

min
w,b

1
2

∥∥∥∥∥w −
K∑

k=1

βkŵk

∥∥∥∥∥
2

+
C

2

N∑
i=1

ξ2i

subject to yi = w · φ(xi) + b+ ξi . (13)

The original single coefficient β has been substituted with a
vector β containing as many elements as the number of prior
models, K. For this formulation the optimal solution is:

w =
K∑

k=1

βkŵk +
N∑

i=1

aiφ(xi) . (14)

Here w is expressed as a weighted sum of the pre-trained
models scaled by the parameters βk, plus the new model
built on the incoming training data [31]. The leave-one-out
prediction of each sample i can again be written in closed
form, similarly to Proposition 1, as

ỹi = yi −
a′i
Pii

+
K∑

k=1

βk a
′′k
i

Pii
, (15)

where [a′′kT , b′′k]T = P [ŷkT , 0]T and ŷk is the vector
which contains the predictions of the k-th previous model
[ŵk · φ(x1), . . . , ŵk · φ(xN )]. As before, the leave-one-out
errors can be calculated and minimized to evaluate the best
weights βk.

D. Multiclass Extensions
In case of classification problems, the methods discussed till

here are suitable for binary tasks but can be extended to the
case of G classes using the one-vs-all formulation described in
Section II-A. We define the matrix Y ∈ RG×N composed by
the columns Y i, where for each sample i the vector Y i has all
the components equal to −1 except for the yi-th that is equal
to 1. In the same way, define the matrix Ŷ , composed by the
columns Ŷ i that contain the predictions generated by a known
multiclass model on the sample i. For each sample i we also
obtain a vector of G leave-one-out predictions, we indicate it
with Ỹ i, and it is easy to show that it can be calculated as

Ỹ i = Y i −
A′i
Pii

+ β
A′′i
Pii

, (16)
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where

[A′, b′] = [Y ,0]P T , (17)

[A′′, b′′] = [Ŷ ,0]P T . (18)

Here A′,A′′ ∈ RG×N and b,0 ∈ RG. In case of multiple
prior models, we use the superscript k to indicate each of
them and, considering their linear combination, we get

Ỹ i = Y i −
A′i
Pii

+
K∑

k=1

βkA
′′k
i

Pii
, (19)

with

[A′′k, b′′k] = [Ŷ
k
,0]P T . (20)

III. LEARNING HOW MUCH TO ADAPT

The adaptive learning methods described above look for the
model parameters (w,b) once the value of the weight β, or
the corresponding vector β, has been chosen. Searching the
optimal β defines a separate learning problem which depends
on the choice of the loss function `. As a result we have
an indication of how much each of the pre-trained models is
reliable for adaptation. In the following we define how to face
this issue in the classification and regression cases, a general
scheme of the proposed solutions is in Figure 2.

A. Classification

For a binary classification problem, and in case of a single
pre-trained model, we can follow the approach proposed in
[39] and find β by minimizing leave-out-out errors using the
logistic loss function:

`(yi, ỹi) =
1

1 + exp(−10(ỹi − yi))
. (21)

Note that the resulting objective function would be non-convex
w.r.t. β. When moving to the choice of multiple weights
for all the pre-trained models we can also overcome the
non-convexity issue described above, by minimizing the loss
function proposed in [31]:

`(yi, ỹi) = max(1− yiỹi, 0), (22)

this is a convex upper-bound to the misclassification loss and
it also has a smoothing effect, similar to the logistic function
in (21).

However in our application we have multiple pre-trained
models and G classes, corresponding to the different grasp
types. Hence it is necessary to define a loss function over
vectors, that compose all these values to define a single
estimate of the multiclass error.

1) Best Prior Model: A first solution could be to consider:

`(Y i, Ỹ i) =
1

1 + exp(−10(maxg 6=yi
{Ỹgi} − Ỹyii))

, (23)

and to evaluate it separately for each of the k ∈ {1, . . . ,K}
pre-trained models on the basis of (16), varying β with small
steps in [0, 1] (this is the approach used in [15]). The minimal
result identifies both the best known subject for adaptation and,
at the same time, the corresponding β. Still, this approach,
as (21), is non-convex thus reaching the global optimum is
not computationally efficient. This solution is schematically
depicted in Figure 2 (left).

2) Multiple Prior Models: To consider multiple prior
knowledge models we propose to use (19) in the convex
multiclass loss [41]:

`(Y i, Ỹ i) = max{1− Ỹyii + max
g 6=yi

{Ỹgi}, 0), (24)

with the final objective function:

min
β

N∑
i=1

`(Y i, Ỹ i) subject to ‖β‖2 ≤ 1, βk ≥ 0 . (25)

The condition of having β in the intersection of the unitary
ball and the positive semi-plane can be seen as a form of
regularization and it is a natural generalization of the original
constraint β ∈ [0, 1] used in [15]. This constraint is necessary
to avoid overfitting problems which can happen when the
number of known models is large compared to the number
of training samples [31].

We implemented the optimization process using a simple
projected sub-gradient descendent algorithm, where at each
iteration β is first projected onto the l2-sphere, ‖β‖2 ≤ 1
and then onto the positive semi-plane. The pseudo-code is
in Algorithm 1, where in line 8 1{·} denotes the indicator
function. Figure 2 (center) describes this solution.

3) Different Weights for Different Classes: Until now we
considered techniques which assign a unique weight to each
known subject. This means that, the whole set of one-vs-
all pre-trained models for a subject are equally weighted.
However, for example, when learning the model for the first
class, it may be useful to give more weight in adaptation to
the first subject than to the second, while it could be the
opposite when learning the model for the second class, and
so on. Hence, to have one more degree of freedom and decide
the adaptation specifically for each class, we enlarge the set of
weight parameters introducing the matrix B ∈ RK×G where
each row k ∈ {1, . . . ,K} contains the vector βT

k with G
elements, one for each class. This approach is described in
Figure 2 (right).

The optimization problem is analogous to the one described
in (25), with a change in the constraints. Each class problem is
now considered separately, so we have G conditions, one for
each of the columns Bg of the B matrix, we impose ‖Bg‖2 ≤
1 and Bji ≥ 0.
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Fig. 2. This figure shows the three methods adopted to leverage information from multiple known subjects when learning on a new one. For all the known
subjects many sEMG signal samples are available, while few sEMG signals are recorded from the new subject. Left: choose only the best known subject and
use its reweighted model as a starting point for learning. Center: consider a linear combination of the known subjects with equal weight for all the grasp
models of each subject. Right: consider again a linear combination of all the known models but assign a different weight to each grasp model for each subject.

Algorithm 1 Projected Sub-gradient Descent Algorithm

1: β = [β1 . . . βK ]← 0

2: t← 1

3: calculate A′ according to (17)

4: calculate A′′k according to (20)

5: repeat

6: Ỹ i ← Y i − A′i
Pii

+
∑K

k=1 β
kA
′′k
i

Pii
∀i = 1, . . . , N

7: g∗i ← argmaxg 6=yi
{Ỹgi} , ∀i = 1, . . . , N

8: di ← 1{1− Ỹyii + Ỹg∗i i > 0} , ∀i = 1, . . . , N

9: βk ← βk − 1√
t

∑N
i=1 di

A′′kg∗
i

i

Pii
, ∀k = 1, . . . ,K

10: if ‖β‖2 > 1 then

11: β ← β/‖β‖2
12: end if

13: βk ← max(βk, 0), ∀k = 1, . . . ,K

14: t← t+ 1

15: until convergence

Output: β

B. Regression

Our goal in using regression is the prediction of the force
applied by one subject in grasping, independently to the
specific kind of grasp performed. Thus now the output yi for
each corresponding input xi is a continuous real value, rather
a discrete one as in classification.

Similarly to what seen before, it is possible to learn the
regression model relying on information from the closest
known subject, or on the combination of multiple pre-trained

models.

1) Best Prior Model: We can use the leave-one-out predic-
tion in (12) to evaluate the square loss (Mean Square Error
MSE):

`(yi, ỹi) = (yi − ỹi)2 =
(
a′i
Pii

+ β
a′′i
Pii

)2

.

The choice of the square loss gives us, summing over i, a
quadratic function in β and the minimum is obtained using:

β =

∑N
i=1

a′i
Pii

a′′i
Pii∑N

i=1

(
a′′i
Pii

)2 . (26)

We use the constraint β ≥ 0, just imposing β = 0 every time
it results negative. Hence, differently from the classification
case, here we do not need any optimization procedure, the
optimal β is given by a closed formula. Once calculated the
minimum value of the summed square loss values for each
k ∈ {1, 2, . . .K}, comparing all of them, we can identify the
best known subject to use for adaptation when learning the
regression model on a new subject.

2) Multiple Prior Models: To take advantage from all the
available pre-trained models we can combine them linearly
and search for a vector of weights as in classification. Hence
the loss function ` can now be defined as

`(yi, ỹi) =

(
a′i
Pii

+
K∑

k=1

βk a
′′k
i

Pii

)2

. (27)

Adding also the condition ‖β‖2 ≤ 1, we can find the best
β vector which minimizes the loss with a Quadratically Con-
strained Quadratic Program (QCQP) solver. In our experiments
we used CVX [42], a package for specifying and solving
convex programs in MATLAB.



IEEE TRANSACTIONS OF ROBOTICS, VOL. X, NO. Y, DATE 7

(a) (b) (c)

Fig. 3. The three different grasp type recorded in the hand posture and force signal dataset [14]: (a) index precision grip; (b) other fingers precision grip;
(c) power grasp. Reproduced from [14].

(a) (b) (c) (d) (e) (f)

Fig. 4. The six different grasp types extracted from the Ninapro dataset [16]: (a) tip pinch grasp; (b) prismatic four fingers grasp; (c) power grasp; (d)
parallel extension grasp; (e) lateral grasp; (f) open a bottle with a tripod grasp. Reproduced from [16].

IV. EXPERIMENTAL DATA

To test the effectiveness of our model adaption techniques
we use two datasets.

a) Hand posture and force signals [14]: This database of
sEMG / hand posture / force signals has been already presented
in [14], and used in [14], [15]. (The following description of
the database is very concise; the interested reader should refer
to the above cited paper(s) for more details.) The signals are
collected from 10 intact subjects (2 women, 8 men) using 7
sEMG electrodes (Aurion ZeroWire wireless) placed on the
dominant forearm according to the medical literature [43]. A
FUTEK LMD500 force sensor [44] is used to measure the
force applied by the subject’s hand during the recording. Data
are originally sampled at 2kHz. Each subject starts from a rest
condition (sEMG baseline activity) then repeatedly grasps the
force sensor using, in turn, three different grips, visible in
Figure 3. The subject either remains seated and relaxed while
performing the grasps, or is free to move (walk around, sit
down stand up, etc.). These phases are referred to as Still-Arm
(SA) and Free-Arm (FA) respectively. Each grasping action is
repeated along 100 seconds of activity. The whole procedure
is repeated twice. The root mean square of the signals along
1s (for classification) and 0.2s (for regression) is evaluated;
subsampling at 25Hz follows. Samples for which the applied
force is lower than 20% of the mean force value obtained
for each subject are labeled as “rest” class. After this pre-
processing we got around 15000 samples per subject, each
sample consists of a 7 elements sEMG signal vector and one
force value.

b) Ninapro [16]: This database has been presented in
[16] and already used in [45]. It contains kinematic and sEMG

data from the upper limbs of 27 intact subjects (7 women,
20 men) while performing 12 finger, 9 wrist, 23 grasping
and functional movements, plus 8 isometric, isotonic hand
configurations. Data are collected using 10 surface sEMG
electrodes (double-differential OttoBock MyoBock 13E200),
8 placed just beneath the elbow at fixed distance from the
radio-humeral joint, while 2 are on the flextor and extensor
muscles. Each subject sits confortably on an adjustable chair
in front of a table and is instructed to perform ten repetitions
of each movement by imitating a video, alternated with a rest
phase. The sEMG electrodes are connected to a standard DAQ
card sampling the signals at 100 Hz and provide an RMS
rectified version of the raw sEMG signal. (For a more detailed
description of the dataset the interested reader should refer
to [16],[45]). We focused only on the grasp and functional
movements extracting 6 actions: tip pinch, prismatic four
fingers, power, parallel extension, lateral and open a bottle
with a tripod grasp (see Figure 4). Each of them belongs to a
different branch of a hierarchy containing all the dataset hand
postures and the first three grasps are the most similar to the
ones considered in [14]. We randomly extracted two sets of 10
and 20 subjects from the dataset and performed classification
experiments on the described 7 class (6 grasps plus rest)
problem considering the Mean Absolute Value (MAV) of the
sEMG signal as time domain features [45]. We repeated the
preprocessing and data split procedure described in [45] with
an extra subsampling of the “rest” data to get a class-balanced
setting.
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V. EXPERIMENTAL RESULTS

As already mentioned in Section II-B, our working assump-
tion is to have K pre-trained models stored in memory; new
data comes from subject K+1 and the system starts training,
to build the K+1’th model. The performance is then evaluated
using unseen data from subject K+1. To simulate this scenario
and to have a reliable estimation of the performance, we use a
leave-one-out approach: out of the 10(20) subjects for which
we have data recordings, we train 9(19) models off-line. These
correspond to the K stored models in memory, while data from
the remaining subject are used for the adaptive learning of the
K+1’th model. This procedure is repeated 10(20) times, using
in turn all the recorded subjects for the adaptive learning of
the model.

We name the proposed adaption methods respectively:

• Best-Adapt: adaptive learning starting from the best prior
knowledge model (method originally presented in [15] and
revised here in Section III-A1);
• Multi-Adapt: adaptive learning starting from a linear com-
bination of the known models (Section III-A2);
• Multi-perclass-Adapt: adaptive learning (for classification)

starting from a linear combination of the known models
with a different weight for each class (Section III-A3).

To assess the performance of all these methods we compare
them to three baseline approaches:

• No-Adapt: is plain LS-SVM using only the new data for
training, as it would be in the standard scenario without
adaption.
• Prior Average: consists in using only the pre-trained mod-
els without updating them with the new training data. We
consider their average performance.
• Prior Start: this corresponds to the performance of the best
model chosen by Best-Adapt at the first training step.
• Prior Test: this is the result that can be obtained a poste-
riori comparing all the prior knowledge models on the test
set and choosing the best one.

As a measure of performance, for classification we use the
standard classification rate; for regression, the performance
index is the correlation coefficient evaluated between the pre-
dicted force signal and the real one. Although we minimized
the MSE in the regression learning process, the choice of
the correlation coefficient is suggested by a practical consid-
eration: when driving a prosthesis, or even a non-prosthetic
mechanical hand, we are not interested in the absolute force
values desired by the subject: mechanical hands usually cannot
apply as much force as human hands do, for obvious safety
reasons, or e.g., in teleoperation scenarios, they could be able
to apply much more force than a human hand can. As already
done, e.g. in [17], [9], [14], we are rather concerned with
getting a signal which is strongly correlated with the subject’s
will. The significance of the comparisons between the methods
is evaluated through the sign test [46].

To build the pre-trained models we used the standard SVM
algorithm. All the parameters to be set during training (C and
γ of the Gaussian kernel) were chosen by cross-validation.
Specifically when the subject k∗ is the new problem, this is

excluded form the dataset and the parameters are chosen over
the remaining set K = {1, . . . ,K\k∗} looking for the values
that produce on average the best recognition rate or correlation
coefficient by learning on each subject k in K and testing on
{K\k∗, k}.

A. Hand posture and force signals [14]

For the experiments running on the dataset described in
[14], the training sequences are random subsets from the
entire dataset of the new subject, i.e. they are taken with-
out considering the order in which they were acquired. We
considered 24 successive learning steps, for each of them the
number of available training samples increases by 30 elements
reaching a maximum of 720 samples. The test runs over all the
remaining samples. We conducted three sets of experiments
considering different prior knowledge-new problem couples:
SA-SA, FA-FA and SA-FA. In the first two cases we have
consistent recording conditions among the source and the new
target problem. The last case reproduces the more realistic
scenario where the prior knowledge is built on data recorded
on subjects in laboratory controlled conditions while the new
subject moves freely. We both classify the grasp type and
predict the force measured by the force sensor.

Figure 5 (left) reports the obtained classification rate at
each step when using SA-SA data. The plot shows that Multi-
perclass-Adapt outperforms both the baselines No-Adapt, Pri-
ors, and all the other adaptive learning methods. The difference
between Multi-perclass-Adapt and Best-Adapt shows an aver-
age advantage in recognition rate of around 2% (p < 0.03).
The gain obtained by Multi-perclass-Adapt with respect to No-
Adapt (p < 0.003) stabilizes around 5% for 500-720 training
samples.

Analogous results are obtained when considering FA-FA
data: Figure 5 (center) reports the classification rate results
in this setting. Multi-perclass-Adapt shows again the best
performance, but now the advantage with respect to Best-
Adapt is significant (p < 0.03) only for less than 100
training samples. Multi-perclass-Adapt outperforms No-Adapt
(p < 0.03) with a gain of 4% in recognition rate for 500-720
samples.

Finally, Figure 5 (right) shows the SA-FA results. Here
the statistical comparison among Multi-perclass-Adapt, Best-
Adapt and No-Adapt is the same as in the FA-FA case.

Analyzing Figure 5 as a whole, we can state that all the
proposed adaptive methods outperform learning from scratch
with the best results obtained when exploiting a linear com-
bination of pre-trained models with a different weight for
each known subject and each class (Multi-perclass-Adapt).
Moreover, we notice that learning with adaption with 30
training samples performs almost as No-Adapt with around
300 samples. Considering the acquisition time, this means that
the adaptive methods are almost ten time faster than learning
from scratch. Using the prior knowledge by itself appears as
a good choice if only very few training samples are available
but looses its advantage when the dimension of the training
set increases. Passing from SA-SA and FA-FA to SA-FA we
can also notice that the results for Prior Average show a small
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Fig. 5. Hand posture and force signals dataset [14]. Classification rate obtained averaging over all the subjects as a function of the number of samples
in the training set. The title of each figure specifies if the data used as source and target are registered in Still-Arm (SA) or Free-Arm (FA) setting.
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Fig. 6. Hand posture and force signals dataset [14]. Correlation coefficient obtained averaging over all the subjects as a function of the number of samples
in the training set. The title of each figure specifies if the data used as source and target are registered in Still-Arm (SA) or Free-Arm (FA) setting.
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Fig. 7. Hand posture and force signals dataset [14]. Classification and Regression in the SA-SA setting for the best and worst subjects. With best and
worst we mean the subjects for which the difference in performance between learning with adaption and learning from scratch is respectively maximum and
minimum.
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Fig. 9. Ninapro dataset [16]. Classification rate obtained averaging over all the subjects as a function of the number of samples in the training set. The
title of each figure indicates the the number of subjects and hand postures considered.

drop (46.3%, 45.5%, 44.3%) related to the change in domain
between the data used for pre-trained model and the one used
for the new subject. The increasing difficulty of the task can
be also evaluated by the progressive decrease in performance
of Multi-perclass-Adapt at the very first step in the three cases:
SA-SA 63.6%, FA-FA 62.7%, SA-FA 60.0%.

The corresponding regression results are reported in Figure
6. From the plot on the left we can notice that, in the SA-
SA case, both the adaptive learning methods outperform No-
Adapt (p < 0.03). However here Multi-Adapt and Best-Adapt
performs almost equally (no statistical significant difference).

Figure 6 (center) shows that Best-Adapt is slightly worse
than Multi-Adapt when passing to the FA-FA setting. Still
the two methods are statistically equivalent and they show a
significant gain with respect to No-Adapt only for more than
200 training samples (p < 0.03).

The problem becomes even harder in the SA-FA case
(Figure 6 right), here Multi-Adapt outperforms No-Adapt only
for more than 500 training samples (p < 0.03).

Globally the increasing difficulty of the three regression task
passing from left to right in Figure 6 is demonstrated by the
general drop in performance. Although we decided to show the
correlation coefficient results, the corresponding MSE would
lead to the same conclusions.

B. Ninapro [16]

For the Ninapro dataset, we shuffled randomly the training
set and we considered 36 learning steps each with 30 samples
reaching a maximum of 1080 training data.

Figure 9 (left) reports the obtained classification rate at each
step when considering 10 subjects for the 6 grasp postures plus
rest. The plot shows that all the adaptive methods performs
almost as No-Adapt, in particular for less than 200 samples
there is no statistical difference among learning from scratch,
learning with adaption or using directly the prior knowledge
(the fair comparison is with Prior Average and Prior Start).
It is important to remark that the “few sample” range grows
together with the number of considered classes: the samples
are selected randomly and it is necessary a minimum amount

of samples per class to get meaningful classification results.
Only Multi-perclass-Adapt outperfoms No-Adapt (p < 0.05)
with an average advantage of 2.5% in recognition rate for more
than 200 samples.

Figure 9 (right) show the corresponding results in case of
20 subjects. On average No-Adapt and Prior Average perform
almost equally to the previous case (with 10 subjects), showing
that the average learning capability per subject is almost stable
in a fixed range. On the other hand Prior Test and Prior Start
present an increase in performance: the higher is the number
of available prior models, the higher is the probability to find
useful information for the new problem. Moreover, here Multi-
perclass-Adapt outperforms both Best-Adapt and No-Adapt
(p < 0.001) with an average gain of 6% with respect to
learning from scratch.

C. Discussion

As a general remark we can state that the three pro-
posed adaptive methods (Multi-perclass-adapt, Multi-Adapt
and Best-Adapt), improve the learning performance to differ-
ent extents if prior-knowledge contains useful information for
the new task, and never harm if any good match between
the data of the new subject and the old source subjects
is found. To further demonstrate this statement, Figure 7
shows the classification and regression results on SA-SA data
respectively for the subject that have the maximum (best)
and the minimum (worst) difference in recognition and re-
gression performance with adaptation compared to No-Adapt.
The worse-case subject represents the paradigmatic case of
no previous models matching the current distribution; as a
consequence the parameter β (β) is set automatically to a
small value (to a vector of small norm). In this case there is
essentially no transfer of prior knowledge. More insight on
this point is given by Figure 8. Here we are mapping the
beta values for each adaptive model in a specific learning step
(210 training samples) of the classification SA-SA experiment.
Best-Adapt chooses only one prior model as reference, while
Multi-Adapt can rely on more than one known subject. For
Multi-perclass-Adapt we show the average beta values over
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the four classes (3 grasps plus rest). The results are consistent
to each other: e.g. for subject 1 (1st row in the matrices), all the
adaptive methods choose subject 8 as the most relevant, Multi-
Adapt gives credit also to subject 2 and the same happens for
Multi-perclass-Adapt which has more freedom in weighting
each class and finds also subject 9 a bit useful. Actually subject
1 corresponds to the best subject, with the corresponding
classification performance reported in Figure 7 (first from the
left). Subject 9 is instead the worst one (Figure 7 second from
the left), and the 9th row of all the matrices of Figure 8 actually
indicates that all the beta values are small.

It is reasonable to claim that the overall performance of the
adaptive methods would increase along with the number of
stored models, since this would mean a larger probability of
finding matching pre-trained models. This is confirmed by the
results on the Ninapro dataset. In the long run, a large database
of sEMG signals and force measure, with subjects possibly
categorized (per age, sex, body characteristics, etc.) in order
to avoid too hard a computational burden, would definitively
help getting uniformly better performance.

Regarding the use of prior knowledge on a new problem, we
point out here that, without an appropriate way to (a) choose
the best prior knowledge model and (b) to weight and combine
it with the new information, it is only partially helpful. In fact,
Prior Test shows that possibly tuning on the test, it can be
found one prior knowledge model that is useful for the new
problem at the beginning but becomes neglegible in case of
many available training samples. On the other hand, the Prior
Average line corresponds to an attempt to use directly a flat
combination of all the pre-trained models on a new subject:
the obtained performance show that this is not a good solution.

Finally we briefly discuss the choice of the learning pa-
rameter C. Here we followed the standard approach in the
community, and kept the the parameter C fixed using the best
value obtained from cross validation on the known subjects.
Still, one might argue that the best way to define it is to
optimize it by using the available training samples of the
target subject, separately for each learning approach. For the
proposed adaptive methods, this would imply to define C
together with β, leading to a non-convex problem with also a
great increase in computational complexity.

VI. CONCLUSION

The results presented in this paper clearly show that
machine-learning-based classification and regression applied
to surface EMG can be improved by means of re-using
previous knowledge. In particular, we start from SVM models
previously built by training on a pool of human subjects, to
boost the training time of a LS-SVM to new subjects. All
the proposed adaptive methods show a significant gain in
recognition rate for grasp type classification and in correlation
coefficient for regression when predicting the applied force,
with respect to learning from scratch on the new subject.
Notice that the classification error/regression accuracy values
shown here are in many cases below the best results obtained
in competing literature (an almost comprehensive table appears
in [3], page 725); but here the point is that of showing the
comparison with non-adaptive baselines.

A comprehensive analysis of the practical applicability of
our methods on real patients is out of scope here; hopefully
however, our results show that the presented method can be
used in any (sEMG classification/regression) scenario.

The overall idea is that a prosthesis could be embedded
with additional, pre-existing knowledge before being shipped
out to the generic patient. This needs to be done once and for
all and, most likely, for a large pool of healthy subjects and/or
amputees of diverse condition, age and type of operation,
and degree of muscle remnant fitness. The fact that the free-
arm condition consistently benefits as well from the proposed
technique — essentially to the same extent as the controlled
one — is a very promising hint, meaning that one could
potentially pre-train a prosthesis in a laboratory and then ship
it outside, and still give a significant benefit of the patient with
respect to the learning-from-scratch case.

The databases we used consists of intact subjects only, but
it is believed that trans-radial amputees can generate similarly
accurate signals ([19] is the most recent result on this topic),
so this seems no disruptive objection to the applicability of
the method. The project NinaPro (http://www.idiap.ch/project/
ninapro/) is currently concerned with collecting such a large
database of mixed subjects. If confirmed on data acquired
from amputees, the current result could pave the way to
a significantly higher acceptance of myoprostheses in the
clinical setting. As future work it would be also interesting
to enlarge the presented approaches to more specific ongoing
learning condition on the new subject, covering the hypothesis
of an increasing number of hand postures.
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APPENDIX
CLOSED FORMULA FOR THE LEAVE-ONE-OUT PREDICTION

We show here that, following the same steps presented in
[39], it is possible to demonstrate the Proposition 1 obtaining
the closed formula for the leave-one-out prediction in (12).
We start from

M

[
a
b

]
=
[
y − βŷ

0

]
. (28)

and we decompose M into block representation isolating the
first row and column as follows:

M =
[

K + 1
C I 1

1T 0

]
=
[
m11 mT

1

m1 M(−1)

]
. (29)
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Let a(−i) and b(−i) represent the parameters of LS-SVM
during the i-th iteration of the leave-one-out cross validation
procedure. In the first iteration, where the first training sample
is excluded we have[

a(−1)

b(−1)

]
= P(−1)(y(−1) − βŷ(−1)) , (30)

where P(−1) = M−1
(−1) , y(−1) = [y2, . . . , yN , 0]T and

ŷ(−1) = [w′ · φ(x2), . . . ,w′ · φ(xN ), 0]T . The leave-one-
out prediction for the first training sample is then given by

ỹ1 = mT
1

[
a(−1)

b(−1)

]
+ βw′ · φ(x1) (31)

= mT
1 P(−1)(y(−1) − βŷ(−1)) + βw′ · φ(x1) . (32)

Considering the last N equations in the system in (28), it is
clear that [m1 M(−1)][aT , b]T = (y(−1) − βŷ(−1)) , and so

ỹ1 = mT
1 P(−1)[m1M(−1)][a1, . . . , aN , b]T + βw′ · φ(x1)

= mT
1 P(−1)m1a1 + mT

1 [a2, . . . , aN , b]T + βw′ · φ(x1) .
(33)

Noting from the first equation in the system in (28) that y1 −
βw′ · φ(x1) = m11a1 + mT

1 [a2, . . . , aN , b]T , we have

ỹ1 = y1 − a1(m11 −mT
1 P(−1)m1) . (34)

Finally, using P = M−1 and applying the block matrix
inversion lemma we get,

P =
[

µ−1 −µ−1m1P(−1)

P(−1) + µ−1P(−1)mT
1 m1P(−1) −µ−1P(−1)mT

1

]
,

where µ = m11 −mT
1 P(−1)m1 and noting that the system

of linear equations (28) is insensitive to permutations of the
ordering of the equations and of the unknowns, we have

ỹi = yi −
ai

Pii
. (35)

Let a = a′ + βa′′, [a′T , b′]T = P [yT , 0]T and [a′′T , b′′]T =
P [ŷT , 0]T , from the equation above we get :

ỹi = yi −
a′i
Pii

+ β
a′′i
Pii

. (36)
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