
Computational Visual Attention

Simone Frintrop

Visual attention is one of the key mechanisms of perception that enables humans
to efficiently select the visual data of most potential interest. Machines face similar
challenges as humans: they have to deal with a large amount of input data and have
to select the most promising parts. In this chapter, we explain the underlying biolog-
ical and psychophysical grounding of visual attention, show how these mechanisms
can be implemented computationally, and discuss why and under what conditions
machines, especially robots, profit from such a concept.

1 What Is Attention? And Do We Need Attentive Machines?

Attention is one of the key mechanisms of human perception that enables us to act
efficiently in a complex world. Imagine you visit Cologne for the first time, you
stroll through the streets and look around curiously. You look at the large Cologne
Cathedral and at some street performers. After a while, you remember that you have
to catch your train back home soon and you start actively to look for signs to the
station. You have no eye for the street performers any more. But when you enter
the station, you hear a fire alarm and see that people are running out of the station.
Immediately you forget your waiting train and join them on their way out.

This scenario shows the complexity of human perception. Plenty of information
is perceived at each instant, much more than can be processed in detail by the hu-
man brain. The ability to extract the relevant pieces of the sensory input at an early
processing stage is crucial for efficient acting. Thereby, it depends on the context
which part of the sensory input is relevant. When having a goal like catching a train,
the signs are relevant, without an explicit goal, salient things like the street perform-
ers attract the attention. Some things or events are so salient that they even override
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your goals, such as the fire alarm. The mechanism to direct the processing resources
to the potentially most relevant part of the sensory input is called selective attention.
One of the most famous definitions of selective attention is from William James, a
pioneering psychologist, who stated in 1890: “Everyone knows what attention is. It
is the taking possession by the mind, in clear and vivid form, of one out of what
seem several simultaneously possible objects or trains of thought” [11]. While the
concept of attention exists for all senses, here we will concentrate on visual attention
and thus on the processing of images and videos.

While it is obvious that attention is a useful concept for humans, why is it of in-
terest for machines and which kinds of machines profit most from such a concept?
To answer these questions, let us tackle two goals of attention separately. The first
goal is to handle the complexity of the perceptual input. Since many visual process-
ing tasks concerned with the recognition of arbitrary objects are NP-hard [23], an
efficient solution is often not achievable. Problems arise for example if arbitrary ob-
jects of arbitrary sizes and extends shall be recognized, i.e. everything from the fly
on the wall to the building in the background. The typical approach to detect objects
in images is the sliding-window paradigm in which a classifier is trained to detect an
object in a subregion of the image and is repeatedly applied to differently sized test
windows. A mechanism to prioritize the image regions for further processing is of
large interest, especially if large image databases shall be investigated or if real-time
processing is desired, e.g. on autonomous mobile robots.

The second goal of attention is to support action decisions. This task is especially
important for autonomous robots that act in a complex, possibly unknown environ-
ment. Even if equipped with unlimited computational power, robots still underlie
similar physical constraints as humans: at one point in time, they can only navigate
to one location, zoom in on one or a few regions, and grasp one or a few objects.
Thus, a mechanism that selects the relevant parts of the sensory input and decides
what to do next is essential. Since robots usually operate in the same environments
as humans, it is reasonable to imitate the human attention system to fulfill these
tasks. Furthermore, in domains as human-robot interaction, it is helpful to generate
a joint focus of attention between man and machine to make sure that both com-
municate about the same object1. Having similar mechanisms for both human and
robot facilitates this task.

As a conclusion, we can state that the more general a system shall be and the
more complex and undefined the input data are, the more urgent the need for a
prioritizing attention system that preselects the data of most potential interest.

This chapter aims to provide you with everything you must know to build a
computational attention system2. It starts with an introduction to human percep-
tion (sec. 2). This section gives you an insight to the important mechanisms in the
brain that are involved in visual attention and thus provides the background knowl-
edge that is required when working in the field of computational attention. If you
are mainly interested in how to build a computational system, you might skip this

1 The social aspect of human attention is described in chapter 8, section 5.4.1
2 Parts of this chapter have been published before in [4].
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Fig. 1 Left: The human visual system (Fig. adapted from http://www.brain-maps.com/visual-
fields.html). Right: The receptive field of a ganglion cell with center and surround and its sim-
ulation with Difference-of-Gaussian filters (Fig. adapted from [15]).

section and directly jump to sec. 3. This section explains how to build a bottom-
up system of visual attention and how to extend such a system to perform visual
search for objects. After that, we discuss different ways to evaluate attention systems
(sec. 4) and mention two applications of such systems in robotic contexts (sec. 5).
At the end of the chapter you find some useful links to Open Source code, freely
accessible databases, and further readings on the topic.

2 Human Visual Attention

In this section, we will introduce some of the cognitive foundations of human vi-
sual attention. We start with the involved brain mechanisms, continue with several
psychological concepts and evaluation methods, and finally present two influential
psychological models.

2.1 The Human Visual System

Let us first regard some of the basic concepts of the human visual system. While
being far from an exhaustive explanation, we focus on describing parts that are
necessary to understand the visual processing involved in selective attention. The
most important visual areas are illustrated in Fig. 1, left.

2.1.1 Eye, Retina, and Ganglion Cells

The light that enters the eye through the pupil passes through the lens, and reaches
the retina at the back of the eye. The retina is a light-sensitive surface and is densely
covered with over 100 million photoreceptor cells, rods and cones. The rods are
more numerous and more sensitive to light than the cones but they are not sensitive
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to color. The cones provide the eye’s color sensitivity: among the cones, there are
three different types of color reception: long-wavelength cones (L-cones) which are
sensitive primarily to the red portion of the visible spectrum, middle-wavelength
cones (M-cones) sensitive to green, and short-wavelength cones (S-cones) sensi-
tive to blue. In the center of the retina is the fovea, a rod-free area with very thin,
densely packed cones. It is the center of the eye’s sharpest vision. Because of this
arrangement of cells, we perceive the small region currently fixated in a high resolu-
tion and the whole surrounding only diffuse and coarse. This mechanism makes eye
movements an essential part of perception, since they enable high resolution vision
subsequently for different regions of a scene.

The photoreceptors transmit information to the so called ganglion cells, which
combine the trichromatic input by subtraction and addition to determine color and
luminance opponency. The receptive field of a ganglion cell, i.e. the region the cell
obtains input from, is circular and separated into two areas: a center and a surround
(cf. Fig. 1, right). There are two types of cells: on-center cells which are stimu-
lated by light at the center and inhibited by light at the surround, and off-center cells
with the opposite characteristic. Thus, on-center cells are well suited to detect bright
regions on a dark background and off-center cells vice versa. Additional to the lumi-
nance contrast, there are also cells that are sensitive to red-green and to blue-yellow
contrasts. The center-surround concept of visual cells can be modeled computation-
ally with Difference-of-Gaussian filters (cf. Fig. 1, right) and is the basic mechanism
for contrast detection in computational attention systems.

2.1.2 From the Optic Chiasm to V1

The visual information leaves the eye via the optic nerve and runs to the optic chi-
asm. From here, two pathways go to each brain hemisphere: the smaller one goes
to the superior colliculus (SC), which is e.g. involved in the control of eye move-
ments. The more important pathway goes to the Lateral Geniculate Nucleus (LGN)
and from there to higher brain areas. The LGN consists of six main layers composed
of cells that have center-surround receptive fields similar to those of retinal ganglion
cells but larger and with a stronger surround. From the LGN, the visual information
is transmitted to the primary visual cortex (V1) at the back of the brain.

V1 is the largest and among the best-investigated cortical areas in primates. It has
the same spatial layout as the retina itself. But although spatial relationships are pre-
served, the densest part of the retina, the fovea, takes up a much smaller percentage
of the visual field (1%) than its representation in the primary visual cortex (25%).
The cells in V1 can be classified into three types: simple cells, complex cells, and
hypercomplex cells. As the ganglion cells, the simple cells have an excitatory and an
inhibitory region. Most of the simple cells have an elongated structure and, there-
fore, are orientation sensitive. Complex cells take input from many simple cells.
They have larger receptive fields than the simple cells and some are sensitive to
moving lines or edges. Hypercomplex cells, in turn, receive the signals from com-
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plex cells as input. These neurons are capable of detecting lines of a certain length
or lines that end in a particular area.

2.1.3 Beyond V1: the Extrastriate Cortex and the Visual Pathways

From the primary visual cortex, a large collection of neurons sends information to
higher brain areas. These areas are collectively called extrastriate cortex, in opposite
to the striped architecture of V1. The areas belonging to the extrastriate cortex are
V2, V3, V4, the infero-temporal cortex (IT), the middle temporal area (MT or V5)
and the posterior-parietal cortex (PP).3

On the extrastriate areas, much less is known than on V1. One of the most im-
portant findings of the last decades was that the processing of the visual information
is not serial but highly parallel. While not completely segregated, each area has a
prevalence of processing certain features such as color, form (shape), or motion.
Several pathways lead to different areas in the extrastriate cortex. The statements
on the number of existing pathways differ: the most common belief is that there are
three main pathways, one color, one form, and one motion pathway which is also
responsible for depth processing [12].

The color and form pathways go through V1, V2, and V4 and end finally in IT,
the area where the recognition of objects takes place. In other words, IT is concerned
with the question of “what” is in a scene. Therefore, the color and form pathway
together are called the what pathway. It is also called ventral stream because of its
location on the ventral part of the body. The motion-depth pathway goes through V1,
V2, V3, MT, and the parieto occipale area (PO) and ends finally in PP, responsible
for the processing of motion and depth. Since this area is mainly concerned with
the question of “where” something is in a scene, this pathway is also called where
pathway. Another name is dorsal stream because it is considered to lie dorsally.

Finally, it is worth to mention that although the processing of the visual informa-
tion was described above in a feed-forward manner, it is usually bi-directional. Top-
down connections from higher brain areas influence the processing and go down as
far as LGN. Also lateral connections combine the different areas, for example, there
are connections between V4 and MT, showing that the “what” and “where” pathway
are not completely separated.

2.1.4 Neurobiological Correlates of Visual Attention

The mechanisms of selective attention in the human brain still belong to the open
problems in the field of research on perception. Perhaps the most prominent out-
come of neuro-physiological findings on visual attention is that there is no single
brain area guiding the attention, but neural correlates of visual selection appear to
be reflected in nearly all brain areas associated with visual processing. Attentional

3 The notation V1 to V5 comes from the former belief that the visual processing would be serial.
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mechanisms are carried out by a network of anatomical areas. Important areas of
this network are the posterior parietal cortex (PP), the superior colliculus (SC), the
Lateral IntraParietal area (LIP), the Frontal Eye Field (FEF) and the pulvinar.

Brain areas involved in guiding eye movements are the FEF and the SC. There is
also evidence that a kind of saliency map exists in the brain, but the opinions where
it is located diverge. Some researchers locate it in the FEF, others at the LIP, the SC,
at V1 or V4 (see [4] for references). Further research will be necessary to determine
the tasks and interplay of the brain areas involved in the process of visual attention.

2.2 Psychological Concepts of Attention

Certain concepts and expressions are frequently used when investigating human
visual attention and shall be introduced here.

Usually, directing the focus of attention to a region of interest is associated with
eye movements (overt attention). However, it is also possible to attend to peripheral
locations of interest without moving the eyes, a phenomenon which is called covert
attention. The allocation of attention is guided by two principles: bottom-up and
top-down factors. Bottom-up attention (or saliency) is derived solely from the per-
ceptual data. Main indicators for visual bottom-up saliency are a strong contrast of a
region to its surround and the uniqueness of this region. Thus, a clown in the parlia-
ment is salient, whereas it is not particularly salient among other clowns (however,
a whole group of clowns in the parliament is certainly salient!). The bottom-up in-
fluence is not voluntary suppressible: a highly salient region captures your attention
regardless of the task, an effect called attentional capture. This effect might save
your life, e.g. if an emergency bell or a fire captures your attention.

On the other hand, top-down attention is driven by cognitive factors such as pre-
knowledge, context, expectations, and current goals. In human viewing behaviour,
top-down cues always play a major role. Not only looking for the train station signs
in the introductory example is an example of top-down attention, also more sub-
tle influences like looking at food when being hungry. In psychophysics, top-down
influences are often investigated by so called cueing experiments, in which a cue di-
rects the attention to a target. A cue might be an arrow that points into the direction
of the target, a picture of the target, or a sentence (“search for the red circle”).

One of the best investigated aspect of top-down attention is visual search. The
task is exactly what the name implies: given a target and an image, find an instance
of the target in the image. Visual search is omnipresent in every-day life: finding a
friend in a crowd or your keys in the livingroom are examples.

In psychophysical experiments, the efficiency of visual search is measured by the
reaction time (RT) that a subject needs to detect a target among a certain number
of distractors (the elements that differ from the target) or by the search accuracy.
To measure the RT, a subject has to report a detail of the target or has to press one
button if the target was detected and another if it is not present in the scene. The
RT is represented as a function of set size (the number of elements in the display).
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(a) Feature search (b) Conjunction search (c) Continuum of search slopes

Fig. 2 (a) Feature search: the target (horizontal line) differs from the distractors (vertical lines) by
a unique visual feature (pop-out effect). (b) Conjunction search: the target (red, horizontal line)
differs from the distractors (red, vertical and black, horizontal lines) by a conjunction of features.
(c) The reaction time (RT) of a visual search task is a function of set size. The efficiency is measured
by the intercept and slopes of the functions (Fig. redrawn from [27]).

The search efficiency is determined by the slopes and the intercepts of these RT ×
set size functions (cf. Fig. 2 (c)). The searches vary in their efficiency: the smaller
the slope of the function and the lower the value on the y-axis, the more efficient
the search. Two extremes are serial and parallel search. In serial search, the reaction
time increases with the number of distractors, whereas in parallel search, the slope
is near zero. But note that the space of search slope functions is a continuum.

Feature searches take place in settings in which the target is distinguished from
the distractors by a single basic feature (such as color or orientation)(cf. Fig. 2, (a)).
In conjunction searches on the other hand, the target differs by more than one fea-
ture (see Fig. 2 (b)). While feature searches are usually fast and conjunction searches
slower, this is not generally the case. Also a feature search might be slow if the dif-
ference between target and distractors is small (e.g. a small deviation in orientation).
Generally, it can be said that search becomes harder as the target-distractor similarity
increases and easier as distractor-distractor similarity increases. The most efficient
search takes place for so called “pop-out” experiments that denote settings in which
a single element immediately captures the attention of the observer. You understand
easily what this means by looking at Fig. 2 (a). Other methods to investigate visual
search is by measuring accuracy or eye movements. References for further readings
on this topic can be found in [6].

One purpose of such experiments is to study the basic features of human per-
ception, that means the features that are early and pre-attentively processed in the
human brain and guide visual search. Undoubted basic features are color, motion,
orientation and size (including length and spatial frequency) [28]. Some other fea-
tures are guessed to be basic but there is limited data or dissenting opinions.

An interesting effect in visual search tasks are search asymmetries, that means the
effect that a search for stimulus ’A’ among distractors ’B’ produces different results
than a search for ’B’ among ’A’s. An example is that finding a tilted line among
vertical distractors is easier than vice versa. An explanation is proposed by [22]: the
authors claim that it is easier to find deviations among canonical stimuli than vice
versa. Given that vertical is a canonical stimulus, the tilted line is a deviation and
may be detected quickly.
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(a) Feature integration theory (b) Guided search model

Fig. 3 Left: Model of the Feature Integration Theory (FIT) (Fig. redrawn from [20]) Right: The
Guided Search model of Wolfe (Fig. adapted from [26] c⃝1994 Psychonomic Society).

2.3 Important Psychological Attention Models

In the field of psychology, there exists a wide variety of theories and models on vi-
sual attention. Their objective is to explain and better understand human perception.
Here, we introduce two approaches which have been most influential for computa-
tional attention systems.

The Feature Integration Theory (FIT) of Treisman claims that “different features
are registered early, automatically and in parallel across the visual field, while ob-
jects are identified separately and only at a later stage, which requires focused atten-
tion” [21]. Information from the resulting feature maps — topographical maps that
highlight conspicuities according to the respective feature — is collected in a mas-
ter map of location. Scanning serially through this map focuses the attention on the
selected scene regions and provides this data for higher perception tasks (cf. Fig. 3
(a)). The theory was first introduced in 1980 but it was steadily modified and adapted
to current research findings.

Beside FIT, the Guided Search Model of Wolfe is among the most influential
work for computational visual attention systems [26]. The basic goal of the model
is to explain and predict the results of visual search experiments. Mimicking the
convention of numbered software upgrades, Wolfe has denoted successive versions
of his model as Guided Search 1.0 to Guided Search 4.0. The best elaborated de-
scription of the model is available for Guided Search 2.0 [26]. The architecture of
the model is depicted in Figure 3 (b). It shares many concepts with the FIT, but
is more detailed in several aspects which are necessary for computer implementa-
tions. An interesting point is that in addition to bottom-up saliency, the model also
considers the influence of top-down information by selecting the feature type which
distinguishes the target best from its distractors.
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3 Computational Attention Systems

Computational attention systems model the principles of human selective attention
and aim to select the part of the sensory input data that is most promising for further
investigation. Here, we concentrate on visual attention systems that are inspired by
concepts of the human visual system but are designed with an engineering objective,
that means their purpose is to improve vision systems in technical applications.4

3.1 General structure

Most computational attention systems have a similar structure, which is depicted
in Fig. 4. This structure is originally adapted from psychological theories like the
Feature Integration Theory and the Guided Search model (cf. Sec. 2.3). The main
idea is to compute several features in parallel and to fuse their conspicuities in a
saliency map. If top-down information is available, this can be used to influence the
processing at various levels of the models. A saliency map is usually a gray-level
image in which the brightness of a pixel is proportional to its saliency. The maxima
in the saliency map denote the regions that are investigated by the focus of attention
(FOA) in the order of decreasing saliency. This trajectory of FOAs shall resemble
human eye movements. Output of a computational attention system is either the
saliency map or a trajectory of focused regions.

While most attention systems share this general structure, there are different ways
to implement the details. One of the best known computational attention systems is
the iNVT from Itti and colleagues [10]. The VOCUS model [4] has adopted and
extended several of their ideas. It is real-time capable and has a top-down mode to
search for objects (visual search). Itti and Baldi presented an approach that is able
to detect temporally salient regions, called surprise theory [8]. Bruce and Tsotsos
compute saliency by determining the self-information of image regions with respect
to their surround [1]. The types of top-down information that can influence an atten-
tion model are numerous and only a few have been realized in computational sys-
tem. For example, the VOCUS model uses pre-knowledge about a target to weight
the feature maps and perform visual search. Torralba et al. use context information
about the scene to guide the gaze, e.g., to search for people on the street level of an
image rather than on the sky area [19]. More abstract types of top-down cues, such
as emotions and motivations, have to our knowledge not yet been integrated into
computational attention systems.

In this chapter, we follow the description of the VOCUS model as representative
of one of the classic approaches to compute saliency.5 We start with introducing the

4 In this chapter, we assume that the reader has basic knowledge on image processing, otherwise
you find a short explanation of the basic concepts in the appendix of [4].
5 While the description here is essentially the same as in [4], some improvements have been made
in the meantime that are included here. Differences of VOCUS to the iNVT can be found in [4].
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Fig. 4 General structure of
most visual attention systems.
Several features are com-
puted in parallel and fused
to a single saliency map.
The maxima in the saliency
map are the foci of attention
(FOAs). Output is a trajectory
of FOAs, ordered by decreas-
ing saliency. Top-down cues
may influence the processing
on different levels.

bottom-up part (Sec. 3.2), followed by a description of the top-down visual search
part (Sec. 3.3).

3.2 Bottom-up saliency

Bottom-up saliency is usually a combination from different feature channels. The
most frequently used features in visual attention systems are intensity, color, and
orientation. When image sequences are processed, also motion and flicker are im-
portant. The main concept to compute saliency are contrast computations that deter-
mine the difference between a center region and a surrounding region with respect
to a certain feature. These contrasts are usually computed by center-surround fil-
ters. Such filters are inspired by cells in the human visual system, as the ganglion
cells and the simple and complex cells introduced in Sec. 2.1. Cells with circular
receptive fields are best modeled by Difference-of-Gaussian filters (cf. Fig. 1, right)
while cells with elongated receptive fields are best modeled by Gabor functions. In
practice, the circular regions are usually approximated by rectangles.

To enable the detection of regions of different extends, the center as well as the
surround vary in size. Instead of directly adapting the filter sizes, the computations
are usually performed on the layers of an image pyramid.

The structure of the bottom-up part of the attention system VOCUS is shown in
Fig. 5. Let us regard the computation of the intensity feature in more detail now to
understand the concept and then extend the ideas to the other feature channels.

3.2.1 Intensity Channel

Given a color input image I, this image is first converted to an image ILab in the Lab
(or CIELAB) color space. This space has the dimension ’L’ for lightness and ’a’ and
’b’ for the color-opponent dimensions (cf. Fig. 5, bottom right); it is perceptually
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Fig. 5 The bottom-up saliency computation of the attention system VOCUS.
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(a) Input image (b) Gaussian pyramid, s0 to s4

Fig. 6 The image which serves as demonstration example throughout this chapter (a) and the
derived Gaussian image pyramid (b).

uniform, which means that a change of a certain amount in a color value is perceived
as a change of about the same amount in human visual perception.

From ILab, a Gaussian pyramid is determined by successively smoothing the im-
age with a Gaussian filter and subsampling it with a factor of 2 along each coordinate
direction (see Fig. 6). In VOCUS, we use a 5×5 Gaussian kernel. The level of the
pyramid determines the area that the center-surround filter covers: on high levels of
the pyramid (fine resolution), small salient regions are detected while on low levels
(coarse resolution), large regions obtain the highest response. In VOCUS, 5 pyramid
levels (scales) are computed: Is

Lab, s ∈ {0, ..,4}. Level I1
Lab is only an intermediate

step used for noise reduction, all computations take place on levels 2 – 4.6

The intensity computations can be performed directly on the images Is
L that

originate from the ’L’ channel of the LAB image. According to the human sys-
tem, we determine two feature types for intensity: the on-center difference re-
sponding strongly to bright regions on a dark background, and the off-center dif-
ference vice versa. Note that it is important to treat both types separately and to
not fuse them in a single map since otherwise it is not possible to detect bright-
dark pop-outs, such as in Fig. 12. This yields 12 intensity scale maps I′′i,s,σ with
i ∈ {(on), (off)},s ∈ {2,3,4},σ ∈ {3,7}. A pixel (x,y) in one of the on-center scale
maps is thus computed as:

I′′on,s,σ (x,y) = center(Is
L,x,y)− surroundσ (Is

L,x,y)

= Is
L(x,y)−

1
(2σ +1)2 −1

(
σ

∑
i=−σ

σ

∑
j=−σ

Is
L(x+ i,y+ j)− Is

L(x,y)

)
(1)

The off-center maps I′′off,s,σ (x,y) are computed equivalently by surround − center.
The straight-forward computation of the surround value is quite costly, especially
for large surrounds. To compute the surround value efficiently, it is convenient to
use integral images [24].

6 The number of levels that is reasonable depends on the image size as well as on the size of the
objects you want to detect. Larger images and a wide variety of possible object sizes require deeper
pyramids. The presented approach usually works well for images of up to 400 pixels in width and
height in which the objects are comparatively small as in the example images of this chapter.
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Fig. 7 Left: The integral image contains at II(x,y) the sum of the pixel values in the shaded region.
Right: the computation of the average value in the shaded region is based on four operations on the
four depicted rectangles according to eq. 5.

The advantage of an integral image (or summed area table) is that when it is once
created, the sum and mean of the pixel values of a rectangle of arbitrary size can be
computed in constant time. An integral image II is an intermediate representation
for the image and contains for a pixel position (x,y) the sum of all gray scale pixel
values of image I above and left of (x,y), inclusive:

II(x,y) =
x

∑
x′=0

y

∑
y′=0

I(x′,y′). (2)

The process is visualized in Fig. 7, left. The integral image can be computed recur-
sively in one pass over the image with help of the cumulative sum s:

s(x,y) = s(x,y−1)+ I(x,y) (3)
II(x,y) = II(x−1,y)+ s(x,y) (4)

with s(x,−1)= 0 and II(−1,y)= 0. This intermediate representation allows to com-
pute the sum of the pixel values in a rectangle F using four references (see Fig. 7
(right)):

F(x,y,h,w) = II(x+w−1,y+h−1)− II(x−1,y+h−1) (5)
−II(x+w−1,y−1)+ II(x−1,y−1).

The ’-1’ elements in the equation are required to obtain a rectangle that includes
(x,y). By replacing the computation of the surround in (1) with the integral compu-
tation in (5) we obtain:

I′′on,s,σ (x,y) = Is
L(x,y)−

F(x−σ ,y−σ ,2σ +1,2σ +1)− Is
L(x,y)

(2σ +1)2 −1
(6)
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Fig. 8 Left: the 12 intensity scale maps I′′i,s,σ . First row: the on-maps. Second row: the off-maps.
Right: the two intensity feature maps I′(on) and I′(off) resulting from the sum of the corresponding
six scale maps on the left.

To enable this computation, one integral image has to be computed for each of the
three pyramid levels Is

L,s ∈ {2,3,4}. This pays off since then each surround can be
determined by three simple operations. The intensity scale maps I′′ are depicted in
Fig. 8, left.

The six maps for each center-surround variation are summed up by across-scale
addition: first, all maps are resized to scale 2 whereby resizing scale i to scale i−1 is
done by bilinear interpolation. After resizing, the maps are added up pixel by pixel.
This yields the intensity feature maps I′:

I′i =
⊕
s,σ

I′′i,s,σ , (7)

with i ∈ {(on), (off)},s ∈ {2,3,4},σ ∈ {3,7}, and
⊕

denoting the across-scale addi-
tion. The two intensity feature maps are shown in Fig. 8, right.

3.2.2 Color Channel

The color computations are performed on the two-dimensional color layer Iab of
the Lab image that is spanned by the axes ’a’ and ’b’. Besides its resemblance to
human visual perception, the Lab color space fits particularly well as basis for an
attentional color channel since the four main colors red, green, blue and yellow are
at the end of the axes ’a’ and ’b’. Each of the 6 ends of the axes that confine the
color space serves as one prototype color, resulting in two intensity prototypes for
white and black and four color prototypes for red, green, blue, and yellow.

For each color prototype, a color prototype image is computed on each of the
pyramid levels 2 – 4. In these maps, each pixel represents the Euclidean distance to
the prototype:

Cs
γ(x,y) =Vmax −||Is

ab(x,y)−Pγ ||, γ ∈ {R,G,B,Y}, (8)
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Fig. 9 Top: the color prototype images of scale s2 for red, green, blue, yellow. Bottom: the corre-
sponding color feature C′

γ maps which result after applying center-surround filters.

where Vmax is the maximal pixel value and the prototypes Pγ are the ends of the ’a’
and ’b’ axes (thus, in an 8-bit image, we have Vmax = 255 and PR = (255,127),PG =
(0,127),PB = (127,0),PY = (127,255)). The color prototype maps show to which
degree a color is represented in an image, i.e., the maps in the pyramid PR show the
“redness” of the image regions: the brightest values are at red regions and the darkest
values at green regions (since green has the largest distance to red in the color space).
Analogical to the intensity channel, it is also important here to separate red-green
and blue-yellow in different maps to enable red-green and blue-yellow pop-outs.
The four color prototype images I2

γ are displayed in Fig. 9, top.
On these pyramids, the color contrast is computed by on-center differences yield-

ing 4∗3∗2 = 24 color scale maps:

C′′
γ,s,σ = center(Cs

γ ,x,y)− surroundσ (Cs
γ ,x,y), (9)

with γ ∈ {R,G,B,Y},s ∈ {2,3,4}, and σ ∈ {3,7}. According to the intensity chan-
nel, the center is a pixel in the corresponding color prototype map, and the surround
is computed according to eq. 6. The off-center-on-surround difference is not needed,
because these values are represented in the opponent color pyramid. The maps of
each color are rescaled to the scale 2 and summed up into 4 color feature maps C′

γ :

C′
γ =

⊕
s,σ

C′′
γ,s,σ . (10)

Fig. 9, bottom shows the color feature maps for the example image.

3.2.3 Orientation Channel

The orientation maps are computed from oriented pyramids. An oriented pyramid
contains one pyramid for each represented orientation (cf. Fig.10, left). Each of
these pyramids highlights edges with this specific orientation. To obtain the ori-
ented pyramid, first a Laplacian Pyramid is obtained from the Gaussian pyramid Is

L
by subtracting adjacent levels of the pyramid. The orientations are computed by
Gabor filters which respond most to bar-like features according to a specified orien-
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Fig. 10 Left: to obtain an oriented pyramid, a Gaussian pyramid is computed from the input image,
then a Laplacian pyramid is obtained from the Gaussian pyramid by subtracting two adjacent levels
and, finally, Gabor filters of 4 orientations are applied to each level of the Laplacian pyramid. Right:
The four orientation feature maps O′

0◦ ,O′
45◦ ,O′

90◦ ,O′
135◦ for the example image.

tation. Gabor filters, which are the product of a symmetric Gaussian with an oriented
sinusoid, simulate the receptive field structure of orientation-selective cells in the
primary visual cortex (cf. 2.1). Thus, the Gabor filters replace the center-surround
filters of the other channels.

Four different orientations are computed yielding 4× 3 = 12 orientation scale
maps O′′

θ ,s, with the orientations θ ∈ {0◦,45◦,90◦,135◦} and scales s ∈ {2,3,4}.
The orientation scale maps O′′

θ ,s are summed up by across-scale addition for each
orientation, yielding four orientation feature maps O′

θ , one for each orientation:

O′
θ =

⊕
s

O′′
θ ,s, (11)

The orientation feature maps for the example image are depicted in Fig. 10, right.

3.2.4 Motion Channel

If image sequences are used as input for the attention system, motion is an important
additional feature. It can be computed easily by determining the optical flow field.
Here, we use a method based on total variation regularization that determines a
dense optical flow field and is capable to operate in real-time [29]. If the horizontal
u and the vertical v component of the optical flow are visualized as images, the
center-surround filters can be applied to these images directly. By applying on- as
well as off-center filters to both images, we achieve four motion maps for each scale
s which we call M′′

ϑ ,s, with ϑ = {right, left, up, down}. After accross-scale addition
we obtain four motion feature maps
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Fig. 11 The motion feature maps M′ for a scene in which a ball rolls from right to left through the
image. From left to right: example frame, motion maps M′

right,M
′
left,M

′
up,M

′
down.

M′
ϑ =

⊕
s

M′′
ϑ ,s. (12)

An example for a sequence in which a ball rolls from right to left through the image
is displayed in Fig. 11. In videos, motion itself is not necessarily salient, but the
contrast of the motion in the current frame to the motion (or absence of motion) in
previous frames. Itti and Baldi describe in their surprise theory how such temporal
saliency can be integrated into a computational attention system [8].

3.2.5 The Uniqueness Weight

Up to now, we have computed local contrasts for each of the feature channels. While
contrast is an important aspect of salient regions, they additionally have an impor-
tant property: they are rare in the image, in the best case unique. A red ball on grass
is very salient, while it is much less salient among other red balls. That means, we
need a measure for the uniqueness of a feature in the image. Then, we can strengthen
maps with rare features and diminish the influence of maps with omnipresent fea-
tures.

A simple method to determine the uniqueness of a feature is to count the number
of local maxima m in a feature map X . Then, X is divided by the square root of m:

W (X) = X/
√

m, (13)

In practice, it is useful to only consider maxima in a pre-specified range from the
global maximum (in VOCUS, the threshold is 50% of the global maximum of the
map). Fig. 12 shows how the uniqueness weight enables the detection of pop-outs.
Other solutions to determine the uniqueness are described in [10, 9].

3.2.6 Normalization

Before the feature maps can be fused, they have to be normalized. This is necessary
since some channels have more maps than others. Let us first understand why this
step is not trivial. The easiest solution would be to normalize all maps to a fixed
range. This method goes along with a problem: normalizing maps to a fixed range
removes important information about the magnitude of the maps. Assume that one
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(a) Input image (b) I′(on) (c) I′(off) (d) I = ∑ W (I′)

Fig. 12 The effect of the uniqueness weight function W (eq. 13). The off-center intensity feature
map I′(off) has a higher weight than the on-center intensity feature map I′(on), because it contains
only one strong peak. So this map has a higher influence and the region of the black dot pops out
in the conspicuity map I.

intensity and one orientation map belonging to an image with high intensity but low
orientation contrasts are to be fused into one saliency map. The intensity map will
contain very bright regions, but the orientation map will show only some moderately
bright regions. Normalizing both maps to a fixed range forces the values of the
orientation maps to the same range as the intensity values, ignoring that orientation
is not an important feature in this case.

A similar problem occurs when dividing each map by the number of maps in this
channel: imagine an image with equally strong intensity and color blobs. A color
map would be divided by 4, an intensity map only by 2. Thus, although all blobs
have the same strength, the intensity blobs would obtain a higher saliency value.

Instead, we propose the following normalization technique: To fuse the maps
X = {X1, ..,Xk}, determine the maximum value M of all Xi ∈ X and normalize each
map to the range [0..M]. Normalization of map Xi to the range [0..M] will be denoted
as N[0..M](Xi) in the following.

3.2.7 The Conspicuity Maps

The next step in the saliency computation is the generation of the conspicuity maps.
The term conspicuity is usually used to denote feature specific saliency. To obtain
the maps, all feature maps of one feature dimension are weighted by the uniqueness
weight W , normalized, and combined into one conspicuity map, yielding map I for
intensity, and C for color, O for orientation, and M for motion:

I = ∑
i

N[0..Mi](W (I′i )), Mi = maxvaluei(I′i ), i ∈ {on,off},

C = ∑
γ

N[0..Mγ ](W (C′
γ)), Mγ = maxvalueγ(C′

γ), γ ∈ {R,G,B,Y},

O = ∑
θ

N[0..Mθ ](W (O′
θ )), Mθ = maxvalueθ (O′

θ ), θ ∈ {0◦,45◦,90◦,135◦},

M = ∑
ϑ

N[0..Mϑ ](W (M′
ϑ )), Mϑ = maxvalueϑ (C′

ϑ ), ϑ ∈ {right, left, up, down},

(14)
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where W is the uniqueness weight, N the normalization and maxvalue the function
that determines the maximal value from several feature maps. The conspicuity maps
I,C, and O are illustrated in Fig. 13 (a) - (c).7

(a) Consp. map I (b) Consp. map C (c) Consp. map O (d) Saliency map S

Fig. 13 The three conspicuity maps for intensity, color, and orientation, and the saliency map.

3.2.8 The Saliency Map and Focus Selection

Finally, the conspicuity maps are weighted and normalized again, and summed up
to the bottom-up saliency map S:

Sbu = ∑
Xi

N[0..MC ](W (Xi)), MC = maxvalue(I,C,O,M), Xi ∈ {I,C,O,M}. (15)

The saliency map for our (static) example is illustrated in Fig. 13 (d). While it is
sometimes sufficient to compute the saliency map and provide it as output, if is
often required to determine a trajectory of image locations which resembles eye
movements. To obtain such a trajectory from the saliency map, it is common practice
to determine the local maxima in the saliency map, ordered by decreasing saliency.
These maxima are usually called Focus of Attention (FOA). Here, we first discuss
the standard, biologically motivated approach to find FOAs, then we introduce a
simple, computationally convenient solution.

The standard approach to detect FOAs in the saliency map is via a Winner-Take-
All Network (WTA) (cf. Fig. 14) [13]. A WTA is a neural network that localizes
the most salient point xi in the saliency map. Thus, it represents a neural maximum
finder. Each pixel in the saliency map gives input to a node in the input layer. Local
competitions take place between neighboring units and the more active unit trans-
mits the activity to the next layer. Thus, the activity of the maximum will reach the
top of the network after k = logm(n) time steps if there are n input units and local
comparisons take place between m units. However, since it is not the value of the
maximum that is of interest but the location of the maximum, a second pyramid out
of auxiliary units is attached to the network. It has a reversed flow of information

7 Since input is a static image, the motion channel is empty and omitted here.
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Fig. 14 A Winner-Take-All
network (WTA) is a neural
maximum finder that detects
the most salient point xi in the
saliency map. Fig. redrawn
from [13].

and “marks” the path of the most active unit. An auxiliary unit is activated if it re-
ceives excitation from its main unit as well as from the auxiliary unit at the next
higher layer. The auxiliary unit yi, corresponding to the most salient point xi, will be
activated after at most 2logm(n) time steps. On a parallel architecture with locally
connected units, such as the brain, this is a fast method to determine the maximum.
It is also a useful approach on a parallel computer architecture, such as a graphics
processing unit (GPU). However, if implemented on a serial machine, it is more
convenient to simply scan the saliency map sequentially and determine the most
salient value. This is the solution chosen for VOCUS.

When the most salient point has been found, the surrounding salient region is
determined by seeded region growing. This method starts with a seed, here the most
salient point, and recursively finds all neighbors with similar values within a certain
range. In VOCUS, we accept all values that differ at most 25% from the value of
the seed. We call the selected region most salient region (MSR). Some MSRs are
shown in Fig. 18. For visualization, the MSR is often approximated by an ellipse
(cf. Fig. 22).

To allow the FOA to switch to the next salient region with a WTA, a mechanism
called inhibition of return (IOR) is used. It inhibits all units corresponding to the
MSR by setting their value to 0. Then, the WTA activates the next salient region. If
it is desired that the FOA may return to a location after a while, as it is the case in
human perception, the inhibition is only active for a predefined time and diminishes
after that. If no WTA is used, it is more convenient to directly determine all local
maxima in the saliency map that exceed a certain threshold (in VOCUS, 50% of the
global maximum), sort them by saliency value, and then switch the focus from one
to the next. This also prevents border effects that result from inhibition when the
focus returns to the borders of an inhibited region.

3.3 Visual Search with Top-down Cues

While bottom-up saliency is an important part of visual attention, top-down cues are
even more important in many applications. Bottom-up saliency is useful if no pre-
knowledge is available, but the exploitation of available pre-knowledge naturally
increases the performance of every system, both biological and technical. One of the
best investigated aspects of top-down knowledge is visual search. In visual search,
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a target shall be located in the image, e.g. a cup, a key-fob, or a book. Here, we
describe the visual search mode of the VOCUS model. Learning the appearance of
the target from a training image and searching for the target in a test image are both
directly integrated into the previously described model. Top-down and bottom-up
cues interact to achieve a joint focus of attention.

An overview of the complete algorithm for visual search is shown in Fig. 15.

Learning mode (input: training image and region of interest (ROI)):
compute bottom-up saliency map Sbu
determine most salient region (MSR) in ROI of Sbu
for each feature and conspicuity map Xi

compute target descriptor value vi
Search mode (input: test image and target descriptor v):

compute bottom-up saliency map Sbu
compute top-down saliency map Std:

compute excitation map E = ∑i(vi ∗Xi) ∀i : vi > 1
compute inhibition map I = ∑i((1/vi)∗Xi) ∀i : vi < 1
compute top-down saliency map Std = E − I

compute saliency map S = t ∗Std +(1− t)∗Sbu with t ∈ [0..1]
determine most salient region(s) in S

Fig. 15 The algorithm for visual search

3.3.1 Learning Mode

“Learning” in our application means to determine the object properties of a specified
target from one or several training images. In learning mode, the system is provided
with a region of interest (ROI) containing the target object and learns which features
distinguish the target best from the remainder of the image. For each feature, a value
is determined that specifies to what amount the feature distinguishes the target from
its background. This yields a target descriptor v which is used in search mode to
weight the feature maps according to the search task (cf. Fig. 16).

The input to the system in learning mode is a training image and a region of
interest (ROI). The ROI is a rectangle which is usually determined manually by the
user but might also be the output of a classifier that specifies the target. Inside the
ROI, the most salient region (MSR) is determined by first computing the bottom-
up saliency map and, second, determining the most salient region within the ROI.
This method enables the system to determine automatically what is important in a
specified region and to ignore the background. Additionally, it makes the system
stable since usually the same MSR is computed, regardless of the exact coordinates
of the rectangle. So the system is independent of variations the user makes when
determining the rectangle manually and it is not necessary to mark the target exactly.
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Fig. 16 In learning mode, VOCUS determines the most salient region (MSR) within the region
of interest (ROI) (yellow rectangle). A target descriptor v is determined by the ratio of MSR vs.
background for each feature and conspicuity map. Values vi > 1 (green) are target relevant and
used in search mode for excitation, values vi < 1 (red) are used for inhibition.

Next, a target descriptor v is computed. It has one entry for each feature and each
conspicuity map Xi. The values vi indicate how important a map is for detecting
the target and are computed as the ratio of the mean target saliency and the mean
background saliency:

vi = mi,(MSR)/mi,(Xi−MSR), i ∈ {1, ...,13}, (16)

where mi,(MSR) denotes the mean intensity value of the pixels in the MSR in map Xi,
showing how strong this map contributes to the saliency of the region of interest,
and mi,(Xi−MSR) is the mean of the remainder of the image in map Xi, showing how
strong the feature is present in the surroundings.

Fig. 16 shows the target descriptor for a simple example. Values larger than 1
(green) are features that are relevant for the target while features smaller than 1
(red) are more present in the background and are used for inhibition.

Learning features of the target is important for visual search but if these features
also occur in the environment they might be of not much use. For example, if a red
target is placed among red distractors it is not reasonable to consider color for visual
search, although red might be the strongest feature of the target. In VOCUS, not only
the target’s features but also the features of the background are considered and used
for inhibition. This method is supported by psychophysical experiments, showing
that both excitation and inhibition of features are important in visual search. Fig. 17
shows the effect of background information on the target descriptor.

Note that it is important that target objects are learned in their typical environ-
ment since otherwise their appearance with respect to the background cannot be
represented adequately. Fig. 18 shows some typical training images and the regions
that the system determined to represent the target.
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Feature target vector v (top) target vector v (bottom)
intensity on/off 0.01 0.01
intensity off/on 9.13 13.17
orientation 0◦ 20.64 29.84
orientation 45◦ 1.65 1.96
orientation 90◦ 0.31 0.31
orientation 135◦ 1.65 1.96
color green 0.00 0.00
color blue 0.00 0.01
color red 47.60 10.29
color yellow 36.25 9.43
conspicuity I 4.83 6.12
conspicuity O 7.90 11.31
conspicuity C 17.06 2.44

Fig. 17 Effect of background information on the target vector. Left: the same target (red horizontal
bar, 2nd in 2nd row) in different environments: all vertical bars are black (top) resp. red (bottom).
Right: the target vectors (most important values printed in bold face). In the upper image, red is
the most important feature. In the lower image, surrounded by red distractors, red is no longer the
prime feature to detect the bar but orientation is (image from [4]).

Fig. 18 Top: some training images with targets (name plate, fire extinguisher, key fob). Bottom:
The part of the image that was marked for learning (region of interest (ROI)) and the contour of
the region that was extracted for learning (most salient region (MSR)) (images from [4]).

3.3.2 Several Training Images

Learning weights from one single training image yields good results if the target
object occurs in all test images in a similar way, i.e., the background color is similar
and the object always occurs in a similar orientation. These conditions often occur
if the objects are fixed elements of the environment. For example, name plates or
fire extinguishers are within the same building usually placed on the same kind of
wall, so the background has always a similar color and intensity. Furthermore, since
the object is fixed, its orientation does not vary and thus it makes sense to learn that
fire extinguishers usually have a vertical orientation.
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weights for red bar
Feature v,b h,b v,d h,d average
int on/off 0.00 0.01 8.34 9.71 0.14
int off/on 14.08 10.56 0.01 0.04 0.42
ori 0◦ 1.53 21.43 0.49 10.52 3.61
ori 45◦ 2.66 1.89 1.99 2.10 2.14
ori 90◦ 6.62 0.36 5.82 0.32 1.45
ori 135◦ 2.66 1.89 1.99 2.10 2.14
col green 0.00 0.00 0.00 0.00 0.00
col blue 0.00 0.00 0.01 0.01 0.00
col red 18.87 17.01 24.13 24.56 20.88
col yellow 16.95 14.87 21.21 21.66 18.45
consp I 7.45 5.56 3.93 4.59 5.23
consp O 4.34 7.99 2.87 5.25 4.78
consp C 4.58 4.08 5.74 5.84 5.00

Fig. 19 Influence of averaging the target descriptor from several training images. Left: four train-
ing examples to learn red bars of horizontal and vertical orientation and on different backgrounds.
The target is marked by the yellow rectangle. Right: The learned target descriptors. Column 2–
5: the weights for a single training image (v=vertical,h=horizontal,b=bright background,d=dark
background). The highest values are highlighted in bold face. Column 6: average vector. Color is
the only stable feature (example from [4]).

To automatically determine which object properties are general and to make the
system robust against illumination and viewpoint changes, the target descriptor v
can be computed from several training images by computing the average descriptor
from n training images with the geometric mean:

vi = n

√
n

∏
j=1

vi j, i ∈ {1, ..,13} (17)

where vi j is the i-th feature in the j-th training image. If one feature is present in the
target region of some training images but absent in others, the average values will
be close to 1 leading to only a low activation in the top-down map. Fig. 19 shows
the effect of averaging target descriptors on the example of searching for red bars in
different environments.

In practice, best results are usually obtained by only two training images. In
complicated image sets, up to 4 training images can be useful (see experiments in
[4]). Since not each training image is equally useful, it can be preferable to select
the training images automatically from a set of training images. An algorithm for
this issue is described in [4].

3.3.3 Search Mode

In search mode, we search for a target by means of the previously learned target
descriptor. The values are used to excite or inhibit the feature and conspicuity maps
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Fig. 20 Computation of the top-down saliency map Std that results from an excitation map E and
an inhibition map I. These maps result from the weighted sum of the feature and conspicuity maps,
using the learned target descriptor.

according to the search task. The weighted maps contribute to a top-down saliency
map highlighting regions that are salient with respect to the target and inhibiting
others. Fig. 20 illustrates this procedure.

The excitation map E is the weighted sum of all feature and conspicuity maps Xi
that are important for the target, namely the maps with weights greater than 1:

E = ∑
i:vi>1

(vi ∗Xi). (18)

The inhibition map I collects the maps in which the corresponding feature is less
present in the target region than in the remainder of the image, namely the maps
with weights smaller than 1:8

I = ∑
i:vi<1

((1/vi)∗Xi). (19)

8 Entries with value 1 are ignored since they indicate that the mean saliency of the target region is
exactly the same as the mean saliency of the surrounding; such a feature is completely useless for
detecting the target. However, in practice this usually does not occur unless a feature is not present
at all, e.g., color is not present in a gray-scale image and the color weights are set to 1.
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The excitation and inhibition map are not normalized to the same range since we
want to preserve the differences among the maps.

The top-down map is obtained by subtracting the inhibition map from the exci-
tation map:

Std = E − I. (20)

After subtraction, negative values are clipped to 0. Fig. 20 shows that both, excita-
tion and inhibition are important to find a target: when searching for the cyan vertical
bar, the excitation map shows bright values for the cyan bar but the brightest region
for the green bar. However, green contains also yellow which is inhibited for a cyan
target. Thus in the resulting top-down map, only the cyan bar is salient.

If the task is pure visual search for a target, the top-down saliency map can
be directly used to determine the focus of attention.9 This is done equivalently to
sec. 3.2.8. However, if bottom-up cues shall be regarded additionally, the bottom-up
and the top-down saliency map have to be fused. This will be discussed in the next
section.

3.3.4 Bottom-up and Top-down Cues Compete for Attention

In human perception, bottom-up and top-down cues compete for attention all of the
time. Depending on how engrossed in a task you are, the influences of bottom-up
and top-down vary. The introductory city-visiting example illustrates this: without a
clear task, the salient street performers attract your gaze. When you start to actively
look for the train station, your top-down attention is focusing on street signs. Finally,
the fire alarm is salient enough to override the task and captures your attention.

Consequently, it is important for a technical system to know what the overall
tasks are, which one the most important task is at the moment, and how important
it is. Depending on such pre-knowledge, the influence of bottom-up and top-down
factors might be determined. After obtaining such a factor, the bottom-up and top-
down saliency map are weighted accordingly and finally fused to a global saliency
map S. To make the maps comparable, Std is normalized in advance to the same
range as Sbu:

S = (1− t)∗Sbu + t ∗N[0..MS]Std, MS = maxvalue(Sbu). (21)

Here, t ∈ [0..1] is the top-down factor that determines the amount of top-down in-
fluence. Determining t is not trivial. Probably the best solution is to learn it while
performing some tasks on a real system, but this is beyond the scope of this article.
Note that a simple solution for a technical system is to not fuse bottom-up and top-
down saliency but to process them independently. Bottom-up salient regions might
be fed to an object recognition module that recognizes the objects, builds a seman-
tic map of the environment with object annotations, and successively improves the

9 Note that in human perception, bottom-up cues always play a role and thus should be considered
if similarity to human perception is desired.
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Fig. 21 Typical pop-out images. Attention systems should be able to detect the outliers.

background knowledge of the system, while top-down cues can be used to solve the
current task by searching for desired objects.

4 Evaluation of computational attention systems

The evaluation of computational attention systems can be done from a psychophys-
ical perspective, e.g. by comparing their results with human perception, or from a
technical perspective, e.g. by measuring the success in an application.

When considering bottom-up systems of attention, the first step is to determine
whether the system is able to detect pop-outs in the dimension of the implemented
features. These tests are important to ensure the basic capabilities of the systems
and are suitable to reveal their strengths and limitations. Thus, a system with the
standard features intensity, color, and orientation should be able to detect popouts
as the ones in Fig. 21. Hereby, the saliency of the target depends on the similarity to
the distractors, the more it differs, the higher the saliency. Thus, a target that differs
only slightly from the distractors might not be detected with the first fixation. This
is in accordance with the psychophysical findings that the more similar target and
distractors are, the slower the visual search (cf. Sec. 2.2)

The evaluation on artificial patterns is only the first step, testing on natural im-
ages is important too. Here, it is usually less clear which region shall be salient,
top-down influences play a larger role and saliency depends stronger on the context
and of preknowledge of the observer. A possibility for evaluation is to compare the
output of the system with human eye movement data (see also Sec. 7 and chapter
11, Sec. 3.2.2). Note that a computational attention system can only roughly ap-
proximate such eye movement trajectories since the top-down cues that influence
human perception are hardly possible to model in such a general scenario and thus
the systems usually operate in bottom-up mode. It is however possible to compare
different attention system based on such data.

An alternative that occurred recently in the computer vision community is the
evaluation on image databases with salient objects, manually labeled by different
users [14]. Note however that the database in [14] contains many close-up views of
objects that cover a large portion of the image, a case for which the human attention
system is not designed. In contrast, the task of human attention is to direct the gaze to
a small region in a complex scene which is afterwards investigated in detail. Thus,
a system as the one described here is designed to operate on scene images rather
than on close-up views of objects and might have to be adapted accordingly to work
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on the above database. A similar approach for evaluation was used by Elazary and
Itti, who used 24 836 pictures of natural scenes from the LabelMe database, in
which objects were manually marked and labeled by a large population of users.
They found that the hot spots in the saliency map predict the locations of objects
significantly above chance [3].

From a technical point-of-view it is not necessarily important that a computa-
tional attention system operates similar to human perception, as long as the outcome
is useful for an application. Two applications in which attention system are applied
are mentioned in sec. 5. But even in these cases, a system should be able to detect
outliers as in Fig. 21 since this belongs to the basic capabilities of visual attention
systems.

The evaluation of top-down systems is easier. Here, the task is clearly specified
and it can be determined easily if a target was detected or not. Note, that a top-down
attention system is no object recognizer, that means it cannot decide whether an
object is present in an image or not. It can simply determine locations that are likely
to obtain the target, usually in form of a trajectory of locations. Thus, instead of
determining a detection rate, it is more reasonable to determine the hit number, i.e.
the number of the focus that is on the target. A hit number of 1 is best and means
that the first focus of attention was on the target. An example of the evaluation of
visual search with VOCUS is displayed in Fig. 22.

Target # test im. av. hit number [%]
Fire extinguisher 46 1.09
Key fob 30 1.23

Fig. 22 Left: Average hit number of VOCUS for two targets on a set of test images. The target de-
scriptors were computed from two training images each (examples of training images cf. Fig. 18).
Right: Two example test images with foci of attention (red ellipses) (example from [4]).

5 Applications in computer vision and robotics

In the introduction, we have pointed out the importance of attentional selection for
tasks that deal with large amounts of image data. Especially in the field of au-
tonomous mobile robots, the concept of visual attention has increasingly gained
interest during the last decade. A large number of EU projects on cognitive robotics
has been launched, e.g. the projects MACS, CogVis, POP, and SEARISE. In many
of these projects, visual attention has been used as perception module.

We will concentrate here on two applications of visual attention systems. A
broader overview can be found in [6]. The first application that we will introduce is
visual robot localization. Here, a robot has to determine its position in the world by
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interpreting its sensor data. When a camera is used as sensor, this is usually done
by detecting visual landmarks in the environment and computing the robot posi-
tion based on the position estimation of the landmarks. An important property of
landmarks is the redetectability in frames that are taken from different viewpoints.
Using salient regions as landmarks is a natural way of exploiting that salient regions
are “special” in an environment and, thus, easy to redetect. An example of a typical
salient landmark is a fire extinguisher. As part of the EU project NEUROBOTICS,
we have used salient visual landmarks for simultaneous localization and mapping
(SLAM) [5]. This task is more difficult than pure localization since the robot ini-
tially does not know anything about its environment and has to build a map and
localize itself inside the map at the same time. We have detected salient regions
with VOCUS, tracked them over several frames to determine the most stable ones
and to determine their 3D position, and stored them as landmarks in a database. At
every time step, currently seen salient regions are compared with landmarks from
the database to enable the robot to detect that it has returned to a previously vis-
ited location (loop closing). This is an especially important step in SLAM to correct
accumulated position errors. A picture of the process is displayed in Fig. 23, left.

Another application is the PlayBot project, lead by Prof. John K. Tsotsos from
York university, Canada [18].10 Goal of the project is to develop a smart wheelchair
to support disabled children. The wheelchair has a display as easily accessible user
interface which shows pictures of places and toys. Once a task like “go to table,
point to toy” is selected, the system drives to the selected location and searches for
the specified toy, using mechanisms based on visual attention (see Fig. 23, (b)).

6 Summary

Computational attention systems are inspired by human perception and aim to de-
tect the most promising regions in images. While computational attention systems
already do a good job in bottom-up saliency computation, many open questions re-
main in the field of top-down attention. All kinds of background knowledge about
the context, the current situation, the layout of the scene, and the specification of the
current task influence the visual processing in humans and should therefore also be
integrated into a technical system. The more technical systems advance, the more
urgent the need for preprocessing modules such as attention systems that prioritize
the data and enable efficient processing with limited resources. Especially in the
field of autonomous robots such a mechanism is important to facilitate the decision
which actions to perform next.

10 More on http://web.me.com/john.tsotsos/Applications/Playbot.html
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(a) Visual SLAM (b) Object manipulation in PlayBot

Fig. 23 Two application scenarios for visual attention systems: (a) Attentional landmarks for visual
SLAM (simultaneous localization and mapping) at the Royal Institute of Technology (KTH) in
Stockholm: robot Dumbo corrects its position estimate by redetecting a salient landmark based
on the attention system VOCUS. The yellow rectangle shows the currently seen frame with a
landmark (top) and the corresponding saliency map (bottom) [5] (Fig. from http://www.iai.uni-
bonn.de/∼frintrop/research.html). (b) PlayBot: a visually guided robotic wheelchair for disabled
children. The selective tuning model of visual attention supports the detection of objects of interest
(Fig. fromhttp://www.cse.yorku.ca/∼playbot).

7 Open Source code, databases, and further reading

Open Source code:

• The iLab Neuromorphic Vision C++ Toolkit (iNVT, pronounced “invent”) from
the group of Laurent Itti is probably the best known and most distributed Open
Source code for computational attention systems [10]. It includes the surprise
model for temporal saliency [8] and is available at http://ilab.usc.edu/toolkit/.

• The SaliencyToolbox from Dirk B. Walther [25] is a more compact reimplemen-
tation of iNVT in Matlab: http://www.saliencytoolbox.net/

• The original VOCUS source code is not freely available, but a reimplementa-
tion of the bottom-up part (in C++) can be found http://sourceforge.net/projects/-
openvolksbot/

• The AIM model (Attention based on Information Maximation) is an attention
system based on information theory. It determines the self-information of a cen-
ter region with respect to a global surround [1]. Matlab code is available at:
http://www-sop.inria.fr/members/Neil.Bruce

• For implementing an own attention system, it is convenient to use the Open
Source Computer Vision Library OpenCV that contains many basic techniques,
from displaying images over computing pyramids to converting images to other
color spaces: http://sourceforge.net/projects/opencvlibrary.
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Databases:

Several databases are available for testing and evaluating visual attention system:

• Image databases of popout search arrays and natural images can be found on the
websites of the iLab: http://ilab.usc.edu/imgdbs/

• Eye tracking data from 20 test persons on 120 still images can be found on:
http://www-sop.inria.fr/members/Neil.Bruce/

• Eye-tracking data from human volunteers watching complex video stimuli are
available from the CRCNS (Collaborative Research in Computational Neuro-
science) data sharing website: http://crcns.org/data-sets/eye

• The MSRA Salient Object Database contains 25000 images with manually la-
beled salient objects: http://research.microsoft.com/en-us/um/people/jiansun/ -
SalientObject/salient object.htm. For a subset of 1000 images, binary maps of the
salient objects are available as ground truth: http://ivrg.epfl.ch/supplementary -
material/RK CVPR09

Further reading:

More about the human visual system can be found in the books of Palmer [16] or
Kandel et al. [12]. The psychology of attention and details on many psychological
attention models are described in a book by Pashler [17] and in the chapter “Atten-
tion” by Bundesen & Habekost in the Handbook of Cognition [2]. A description of
the social aspects of attention can be found later in this book in chapter 8, section
5.4.1. Wolfe has written a comprehensive article that contains everything you ever
wanted to know about visual search [27]. One of the first computational models of
visual attention was introduced by Koch and Ullman in 1985 with a detailed de-
scription of the winner-take-all approach [13]. The basic paper that describes the
widely used computational attention model by the group of Laurent Itti in a com-
prehensive manner is [10]. Recently, several groups have used information-theoretic
approaches to determine visual saliency [8, 1, 7]. The latter also tackle the aspect
of top-down saliency for object recognition by determining salient features that best
distinguish a visual class from other classes [7]. Top-down information in the form
of knowledge about the scene and its visual layout was used by Torralba et al. to
guide visual attention to relevant parts of an image [19]. A survey on computational
attention systems that aims to bridge the gap between the research on human and
computational visual attention can be found in [6].

Research papers on computational attention appear on conferences and in jour-
nals of many different areas, e.g. cognitive perception, computer vision, and cog-
nitive robotics. Important journals for cognitive aspects of attention are “Attention,
Perception, and Psychophysics” and the “Journal of Vision”. In the technical fields,
much work can be found on workshops on cognitive systems that usually take place
as satellites of big conferences, such as the “International Symposium on Attention
in Cognitive Systems” at IJCAI 2011. Journal articles appear e.g. in “Computer Vi-
sion and Image Understanding” and in the “IEEE Transactions on Pattern Analysis
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and Machine Intelligence”, or, if related to robotics, in the “IEEE Transactions on
Robotics” and the “Robotics and Autonomous Systems”.

8 Questions

The following questions shall help you to think more deeply about certain impor-
tant aspects of attention systems, leading hopefully to a better understanding of the
abilities and limitations of such approaches.

• Which objects of the following list are likely to be detected with a bottom-up
attention system and which are not: a traffic sign, a glass, a large object among
small ones, an apple on the table, an apple in a box full of apples?

• You notice that the attention system detects very small salient regions on your
test images. How could you adapt the attention system to detect larger objects as
well? What could you do if you do not have access to the source code and you
can only adapt the input image itself?

• Why is the arithmetic mean not an adequate alternative for eq. 17? Tip: consider
two training images with vi = 0.5 and vi = 2 respectively, for feature map i.
Which value would you expect and what do you get by arithmetic/geometric
mean?

• What happens if you search for a target object with the top-down attention system
in an image where the target is not present?

• How does an attention system differ from a standard interest point detector such
as the Difference of Gaussian detector or the Harris corner detector? How does a
top-down attention system differ from an object recognition module?

9 Glossary

• Bottom-up attention: one of the factors that guide human attention (the other is
top-down attention). Bottom-up attention is purely data-driven and guides the
gaze to salient regions in a scene. Indicators that attract bottom-up attention are
strong contrasts and the uniqueness of a region.

• Center-surround filters: the main concept in visual attention systems to detect
contrasts. They are inspired by on-center and off-center cells of the human visual
system.

• Saliency: The quality of a region to stand out relative to its surround.
• Top-down attention: one of the factors that guide human attention (the other is

bottom-up attention). Top-down attention is driven by cognitive factors such as
pre-knowledge, context, expectations, motivations, and current goals. One of the
best investigated areas of top-down attention is visual search.
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• Visual search: the task to find an item in a scene. It is one of the best investigated
parts of top-down attention. Visual search experiments are used frequently in
cognitive sciences to investigate the human visual system.
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