Face Detection and Bi-Modal Authentication

Sébastien Marcel

marcel@idiap.ch

IDIAP Research Institute Martigny, Switzerland

http://www.idiap.ch

Outline

- Introduction and Background
- Face Detection + demo
- Bi-Modal Authentication + demo
- Discussions

Introduction and Background

- Technologies developed at IDIAP of potential interest:
 - Face detection and tracking,
 - Biometric authentication (Face + Speech),
- Demonstrators:
 - Bi-modal authentication demo since 2003 (versions α and 1),
 - Face detector added in 2004 (version 2),
 - Software: based on Torch library (www.torch.ch)
 - Interface: QT
 - Platform: Linux
- Time-line:

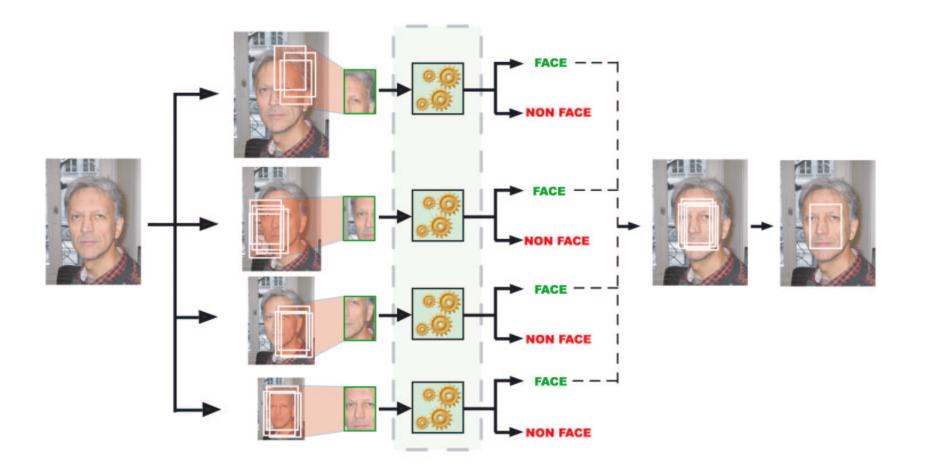
A step forward ...

- A step forward: move IDIAP demonstrators (running Linux) to Win XP,
- Partnership with HEVs (Technical University of Valais),
- TheArk/IdeArk is funding a project between IDIAP and HEVs,
- The goal of the project is to develop two applications:
 - A face tracker (fast face detector)
 - A Bio-Login and its User Manager (BLUM)

Partners & Persons involved

- IDIAP (4 persons):
 - S. Marcel (Face detection and authentication),
 - J. Mariethoz (Speech authentication),
 - Y. Rodriguez (Face detection),
 - F. Cardinaux (Face authentication)
- TheArk: F. Bagnoud,
- IdeArk: F. Crittin,
- HEVs (4 persons):
 - D. Gabioud (Project Manager),
 - J-P. Gehrig (Face tracker and BLUM),
 - F. Dessimoz (Bio-Login and BLUM),
 - G. Maître (Quality control & Performance evaluation)

Outline


- Introduction and Background
- Face Detection + demo
- Bi-Modal Authentication + demo
- Discussions

Face Processing: Definitions

- Face localization: locates human faces in images at different positions, scales, orientations and lighting conditions with the assumption that the image contains one and only one face,
- Face detection: generalization of face localization to multiple faces,
- Face tracking: keep trace of similar detected/localized faces within a video sequence.

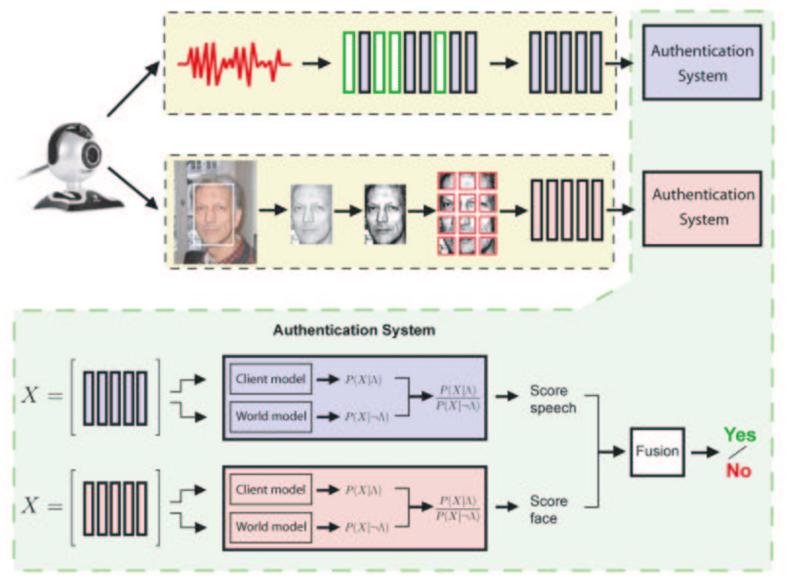
Face Detection: Overview

• Frontal face detection:

it is so fast that it provides the illusion of tracking

Face Detection: Demonstration

- Details:
 - Programming: Torch, C++ and QT
 - Platform: Win XP
 - Device: a Logitech camera (QuickCam Zoom, 4000 Pro, Notebook Pro, Orbit Sphere)


Outline

- Introduction and Background
- Face Detection + demo
- Bi-Modal Authentication + demo
- Discussions

Bi-Modal Authentication: Definitions

- Identification: identify a person based on the face/speech of a person. This face/speech has to be compared with all the registered persons (one-to-many matching),
- Authentication (or verification): is concerned with validating a claimed identity based on the face/speech, and either accepting or rejecting the identity claim (one-to-one matching),
- Recognition: general topic that includes both identification and authentication.

Bi-Modal Authentication: Overview

Bi-Modal Authentication: demonstration

- Details:
 - Programming: Torch, C++ and QT
 - Platform: Win XP
 - Device: a Logitech camera (QuickCam Zoom, 4000 Pro, Notebook Pro, Orbit Sphere)
- Two applications:
 - Bio-Login User Manager: Creates a new account (Enrollment)

- Bio-Login: Login using your face and your voice (Test)

Discussions

- Questions ?
- More details ?

More details

• Bi-Modal authentication

Bi-Modal Authentication: Framework

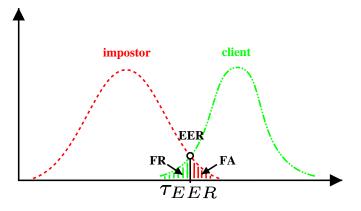
- Face (64x80 pixels): Discrete Cosine Transform (DCT) based features and Gaussian Mixture Models (GMMs)
 - features: sequence $(X_1^F = \{\mathbf{x}_1...\mathbf{x}_F\})$ of DCTmod2 frames $\mathbf{x}_f \in \mathbb{R}^{18}$ (15 DCT coeff. -3 first coeff. +3 Δ_x +3 Δ_y)
 - models: diagonal GMMs (λ^{face}) with 512 gaussians (18'944 param.)
 - score: $\Lambda_C^{face}(X_1^F) = \log P(X_1^F | \lambda_C^{face}) \log P(X_1^F | \neg \lambda_C^{face})$
- Speech (8 KHz): Linear Freq Cepstral Coefficient (LFCC) features and GMMs
 - features: sequence $(Y_1^S = \{\mathbf{y}_1...\mathbf{y}_S\})$ of LFCC frames $\mathbf{y}_s \in \mathbb{R}^{33}$ (16 basis + ∂ + log energy ∂)
 - models: diagonal GMMs (λ^{speech}) with 200 gaussians (13'400 param.)
 - score: $\Lambda_C^{speech}(Y_1^S) = \log P(Y_1^S | \lambda_C^{speech}) \log P(X_1^S | \neg \lambda_C^{speech})$
- Fusion: $P(X, Y|C) = w \cdot \Lambda_C^{face}(X) + (1-w) \cdot \Lambda_C^{speech}(Y)_{\mathrm{Se}}(X) + (1-w) \cdot \Lambda_C^{speech}(Y)$

. Sébastien Marcel, February 2005 – p.16/2

Bi-Modal Authentication: Enrollment

- Let us note:
 - the parameter set for client C as λ_C ,
 - the parameter set describing a generic client as $\neg \lambda_C$,
 - $X = {\mathbf{x}_t}_{t=1}^T$ as the set of feature vectors \mathbf{x}_t supporting the claim.
- 1 train a world model $\neg \lambda_C$ from a large dataset by Maximum Likelihood,
- 2 adapt a client model λ_C from $\neg \lambda_C$ using client data by Maximum A Posteriori,
- given a claim for client C's identity and a set of feature vectors X supporting the claim, we find an opinion on the claim using:

$$\Lambda_C(X) = \log P(X|\lambda_C) - \log P(X|\neg\lambda_C)$$
(1)


where $P(X|\lambda_C)$ is the likelihood of the claim coming from the true claimant and $P(X|\neg\lambda_C)$ is the likelihood of the claim coming from an impostor,

Fusion

- Goal: merge outputs of face and speech experts (2 or more) into a feature vector $[\Lambda^1(X),...,\Lambda^n(X)]$ and try to classify it as a client or an impostor,
- Classifiers: Linear, MLP (Multi-Layer Perceptrons), SVM (Support Vector Machines),
- Fusion produces an opinion $\Lambda^*(X)$ that might be used for final decision.

Performance Evaluation

- the verification decision is then reached as follows: given a threshold τ , the claim is:
 - is accepted when $\Lambda(X) \geq \tau$,
 - is rejected when $\Lambda(X) < \tau$.
- Select a threshold to take the final decision:

- False Rejection (FRR): when the system rejects a client,
- False Acceptance Rate (FAR): when the system accepts an impostor,
- Half Total Error Rate ($HTER = \frac{FRR + FAR}{2}$): unique measure,
- the decision threshold τ chosen on a development data set.

results (in terms of HTER) on XM2VTS, BANCA and IDIAP databases:

	XM2VTS (LP1)	BANCA (Mc)	BANCA (P)	IDIAP
Face	1.67	5.77	18.96	7.61
Speech	1.14	4.32	12.29	3.15
Fusion	0.48	4.32	9.99	1.49

- XM2VTS can be found at http://www.ee.surrey.ac.uk/Research/VSSP/xm2vtsdb/,
- BANCA can be found at http://www.ee.surrey.ac.uk/banca/.