
Neural Network Hardware Implementations

E1.2 Neural network adaptations to hardware
implementations

Perry D Moerland and Emile Fiesler

Abstract

In order to take advantage of the massive parallelism offered by artificial neural networks,
hardware implementations are essential. However, most standard neural network models
are not very suitable for implementation in hardware and adaptations are needed. In this
section an overview is given of the various issues that are encountered when mapping
an ideal neural network model onto a compact and reliable neural network hardware
implementation, like quantization, handling nonuniformities and nonideal responses,
and restraining computational complexity. Furthermore, a broad range of hardware-
friendly learning rules is presented, which allow for simpler and more reliable hardware
implementations. The relevance of these neural network adaptations to hardware is
illustrated by their application in existing hardware implementations.

E1.2.1 Introduction

Soon after the widespread revival of neural network research in the mid-1980s, it was realized that to
fully profit from the massive parallelism inherent in neural network models, hardware implementations are
essential. This has led to a large variety of implementations using digital and analog electronics, optics,
and hybrid techniques. Even though these implementations are largely different, a common denominator
is the mapping of neural network algorithms onto reliable, compact, and fast hardware. Any hardware
implementation has to optimize three main constraints: accuracy, space, and processing speed. The design
of hardware implementations is governed by a balancing of these criteria. An analog implementation, for
example, is very efficient in terms of chip area and processing speed, but this comes at the price of a
limited accuracy of the network components. In general, this amounts to a trade-off between the accuracy
of the implementation and the reliability of its performance. In this section the influence of the limitations
typical for hardware implementations will be outlined. Examples of this phenomenon are the following:

• The quantization of network parameters in digital implementations, specifically its weights, to obtain
a far more compact implementation. Its counterpart in analog implementations is a limited accuracy
of the network parameters due to system noise.

• Computation in analog hardware, be it electronic or optical, is characterized by the nonuniformity of
its components and by the fact that the components are at best approximations of the corresponding
mathematical operations in the neural network model.

This section provides a thorough review of the experimental and theoretical research that has been
performed on the behavior of existing learning algorithms under the limitations imposed by hardware.
Furthermore, training algorithms are discussed that offer an improved performance in the case of limited
accuracy and that further simplify the hardware implementation of neural networks.

In section E1.2.2, the effects of a quantization of the network parameters and weight discretization
algorithms for various neural network models are reviewed. The different approaches are illustrated
with examples from existing neural hardware implementations and several commonly used schemes are

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 E1.2:1

Neural network adaptations to hardware implementations

discussed in more detail. The influence of hardware nonidealities, such as spatial nonuniformity and
nonideal response is outlined in section E1.2.3. Section E1.2.4 contains an overview ofhardware-
friendly learning algorithmswhich are better suited for hardware implementation and especially for on-chip
learning. Finally, in section E1.2.5, a summary and conclusions are presented.

E1.2.2 Quantization effects

The use of very high precision cannot be matched with the goal of developing fast and compact
hardware implementations. While in digital implementations a high numerical precision is too area
consuming, it is incompatible with the system noise present in analog implementations. Therefore,
hardware implementations of neural networks typically use a representation of the network parameters with
a limited accuracy. For example, in Philips’ L-Neuro 1.0 architecture, which allows the implementation
of feedforward networks and on-chip backpropagation training, 16-bit weights are used during the training
process and only 4-bit or 8-bit weights are employed during recall (Mauduitet al 1992). An example of an
analog electronic implementation is Intel’s Electrically Trainable Analog Neural Network (ETANN), which
can perform an impressive two billion weight multiplications per second. The accuracy of its weights and
neurons, however, can be compared with a resolution of only seven bits (Holleret al 1989).

Table E1.2.1. Weight discretization in multilayer neural networks: off-chip learning.

No of benchmarks
Accuracy

Reference (bits) Artificial Real world Remarks

Holt and Hwang (1993) 8 1 – Finite-precision error analysis
for the forward retrieving pass

Dündar and Rose (1995) 10 2 – Statistical model of weight quantization
in sigmoidal networks

Pich́e (1995) 6–10 2 – Statistical analysis of the effects of weight
errors upon an ensemble of multilayer networks

Table E1.2.2. Weight discretization in multilayer neural networks: chip-in-the-loop learning.

No of benchmarks
Accuracy

Reference (bits) Artificial Real world Remarks

Fiesleret al (1988) 2–3 3 – Forward pass with discrete weights,
Fiesleret al (1990) backward pass with continuous weights
Marchesiet al (1993) 3–4 1 1 Power-of-two weights in the forward

pass and an adaptive learning rate
Tang and Kwan (1993) 3–4 1 – Power-of-two weights and adaptive

gain of the activation function

Since hardware implementations are characterized by a low numerical precision, it is essential to
study the effects of this on the recall and training of the various neural network models. The need for
a further reduction of the accuracy, while retaining a satisfactory network performance, has also led to
variousweight discretizationalgorithms, especially designed for this purpose. Since most research has been
performed formultilayer feedforward networks, these will be discussed separately from the other neuralC1.2

network paradigms. A compact overview of a large variety of results on the effects of limited precision
in neural networks can be found in tables E1.2.1 to E1.2.4. These tables list the number of bits that are
required for satisfactory (learning) performance and briefly describe the core idea of the algorithms. In
order to give an indication of the quality of the experimental evaluation in the cited articles, two columns
listing the number ofartificial and real-world benchmarks on which the algorithms have been tested are
also included.

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 E1.2:2

C1.2

Neural network adaptations to hardware implementations

E1.2.2.1 Quantization effects in multilayer neural networks

Most methods deal with the various aspects of limited precision calculation in multilayer networks. These
approaches can be divided into three categories corresponding to the three different training modes for
neural network hardware:

Off-chip learning. In this case the hardware is not involved in the training process, which is performed
on a computer using high precision. The weights resulting from the training process are quantized and
then downloaded on the chip. Only the forward propagation pass in the recall phase is performed on-
chip which makes these quantization effects amenable for mathematical analysis using a statistical model.
Some of the results have been summarized in table E1.2.1; these indicate that the accuracy needed in the
on-chip forward pass is around 8 bits. Piché (1995) gives a comparison between Heaviside and sigmoidal
multilayer networks, showing that the weight precision required in a Heaviside network is much higher
and even doubles when a layer is added to the network. An interesting practical example illustrating
that low on-chip accuracy is sufficient when mapping a neural network trained with a high precision onto
a chip is the application of the analog ANNA chip to high-speed character recognition (Säckingeret al
1992). Here, a high precision (32-bit floating point) network is mapped on the ANNA chip which uses
a 6-bit weight resolution and a 3-bit resolution for the neuron inputs and outputs. The chip’s recognition
accuracy is only slightly less than the one obtained with floating-point calculations.

Chip-in-the-loop learning. In this case the neural network hardware is used during training, but only
in forward propagation. The calculation of the new weights is done off-chip on a computer, which
downloads the updated weights onto the chip after each training iteration. Several learning algorithms
have been proposed that take advantage of the fact that in this way the limited precision only plays a
role in the forward propagation pass and that floating point calculations can be used in the backward pass
(table E1.2.2). One of the first, and perhaps most successful, weight discretization techniques is of the
chip-in-the-loop kind (Fiesleret al 1988, 1990). It is suitable for feedforward neural networks, easy to
implement, and very flexible in that it can handle a large range of discretizations up to the precision of
a few bits only (table E1.2.2). The basic idea is to start with a normal neural network with continuous-
valued weights. These weights are discretized using a staircase-shapedmultiple-threshold functionand the
so-created discrete weights are then used for the forward propagation pass of the learning rule. The errors
obtained, which are based on the difference between the obtained network outputs and the desired target
outputs, are subsequently used to update the continuous-valued weights during the backward propagation
pass. This scheme is repeated until convergence is obtained. This flexible weight discretization method has
been successfully used in the development of the Apple Newton (Lyon and Yaeger 1996), and in optical
neural networks at Mitsubishi, Japan (Takahashiet al 1991) and in Switzerland (Saxena and Fiesler 1995,
Moerlandet al 1996). A similar approach has been applied to design neural networks restricted to single
power-of-two weights (see section E1.2.2.3) (Marchesiet al 1993, Tang and Kwan 1993).

On-chip learning. Here, the training of the neural network is done entirely on-chip which offers the
possibility of continuous training. This means specifically that at least the weight values are represented
with only a limited precision. Simulations have shown that the popular backpropagation algorithm (see for
example the article by Rumelhartet al (1986)) is highly sensitive to the use of limited-precision weights
and that training fails when the weight accuracy is lower than 16 bits (first two references in table E1.2.3).
This is mainly because the weight updates are often smaller than the quantization step which prevents
the weights from changing. In order to reduce the chip area needed for weight storage and to overcome
system noise, a further reduction of the number of allowed weight values is desirable. Several weight
discretization algorithms have therefore been designed and an extensive list of them and the attainable
reduction in required precision is given in table E1.2.3. Some of these weight discretization algorithms
have already proven their usefulness in hardware implementations. Battiti’s reactive tabu search, for
example, has been implemented in the TOTEM processor and successfully applied to a triggering problem
in high-energy physics with a weight accuracy as low as 4 bits (Battiti and Tecchiolli 1994). Recently, an
analog electronic chip (Kakadu) has been applied successfully to some classification problems by training
it with the combined search algorithm and semiparallel weight perturbation algorithms using only a 6-bit
weight accuracy (Jabri 1994, Leong and Jabri 1995).

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 E1.2:3

Neural network adaptations to hardware implementations

E1.2.2.2 Quantization effects in other neural network models

Also for other neural network models the effects of a coarse quantization of the weight values on recall
and learning have been investigated. The small number of weight discretization algorithms proposed can
be partly explained from the fact that the required accuracy for successful learning in these models is
lower than for gradient descent learning in multilayer networks (table E1.2.4). An interesting example of
a hardware implementation is Bellcore’s implementation of a Boltzmann machine and mean-field learning,
which allows on-chip learning with only 5-bit weights (Alspector 1992). Recently, a weight discretization
algorithm for an associative memory with binary{−1, +1} weights has been implemented on a digital
VLSI chip (Hendrich 1996). The pattern storage capacity that can be obtained with this learning rule
is good (0.4 times the number of neurons) and the algorithm is suited for on-chip learning. Verleysen’s
associative memory training algorithm, that uses the Simplex method to train a network with ternary
weights, is best suited for off-chip training (Verleysenet al 1989).

Table E1.2.3. Weight discretization in multilayer neural networks: on-chip learning.

No of benchmarks
Accuracy

Reference (bits) Artificial Real world Remarks

Asanovíc (1991) 16 – 1 Coarse weight quantization in the
backpropagation algorithm

Holt and Hwang (1993) 14–16 2 – An error analysis of backpropagation
with finite precision

Grossman (1990) 1 1 – Adaptation of both weights and the
internal representation of the neurons

Reyneri and Filippi (1991) 9–10 1 1 Batch backpropagation with a
near-optimum learning rate

Xie and Jabri (1992) 10 – 2 Weight perturbation with gain adaptation
Xie and Jabri (1992) 9 – 2 Combination of weight perturbation

and a partial random search
Abramson (1991) 2 3 – A slight modification of the method of

Grossman (1990) to train sparsely
connected Heaviside networks

Sakaueet al (1993) 8–10 – 2 A weighted error function in the
backpropagation algorithm based on
an overestimation of the error

Hollis and Paulos (1994) 13 1 – Weight perturbation with an adaptive
gain and learning rate

Jabri (1994) 6 1 1 Semi-parallel weight perturbation algorithms
Simard and Graf (1994) 16 – 1 Backpropagation without multiplication;

gradients and states of power-of-two
Battiti and Tecchiolli (1995) 1–8 1 2 Heuristic method for solving

combinatorial optimization problems
Dündar and Rose (1995) 10 2 – Backpropagation with forced weight updates

E1.2.2.3 Some remarks on commonly used schemes

A common point of many weight discretization algorithms is the way in which the effects of having only a
limited weight rangeare treated. It has been shown by simulations that as soon as the range of the weights
decreases below a certain value, which depends on the problem at hand, the training fails to converge
because of the clipping of the weight values (Hoehfeld 1992). This can often be solved by allowing a
dynamic rescaling of the weights (and hence the weight range) by adapting the gainβ of the activation
function. The calculation of an activation valueaj in a multilayer network is namely done as follows:

aj = φ

(
β
(∑

i

wi,j ai

))
. (E1.2.1)

Thus, a change of the weight range is equivalent to changing the gainβ of the activation function. Various
strategies have been proposed to perform this gain adaptation, ranging from heuristics based on the average

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 E1.2:4

Neural network adaptations to hardware implementations

Table E1.2.4. Weight discretization in other neural network models.

No of benchmarks
Accuracy

Reference (bits) Artificial Real world Remarks

Self-organizing map,
see Kohonen (1989)

Kohonen (1993) 3–4 – 1 Quantization of input values during recall
Ruepinget al (1994) 4 2 1 Power-of-two adaptation factor

and quantized weights
Thiran et al (1994) 5 1 – Uses a conical neighborhood function

instead of a rectangular one

Associative memory,
see Hopfield (1982)

Verleysenet al (1989) 2 1 – A linear programming learning algorithm
for associative memories

Johannetet al (1992) 9–11 1 – Integer arithmetics for learning
in associative memory

Hendrich (1996) 1 1 – Associative memory with binary weights
and a good storage capacity

Boltzmann network
(Ackley et al 1995)

Balzeret al (1991) 6–8 2 – Coarse quantization of the weights
during learning

Alspectoret al (1992) 5 2 – Coarse weight quantization for Boltzmann
and mean-field learning

Neocognitron
(Fukushima 1980)

White and Elmasry (1992) 3 1 – Uses power-of-two weights

Cascade topology
(Fahlman and Lebiere 1990)

Hoehfeld and 12 2 1 Coarse weight quantization in the
Fahlman (1992) cascade correlation algorithm
Hoehfeld and 6 2 1 Cascade correlation with probabilistic
Fahlman (1992) rounding and variable gain
Campbell and 1 2 1 A constructive algorithm for Heaviside
Perez Vincente (1995) cascade networks

value of the incoming connections to a neuron (Hoehfeld 1992, Xie and Jabri 1992), to approaches that
use some form of gradient descent to train the gains (Tang and Kwan 1993, Coggins and Jabri 1994).

In some training algorithms the weight values have been limited to powers-of-two (White and Elmasry
1992, Tang and Kwan 1993, Marchesiet al 1993). The main advantage of this technique is that all costly
multiplications can be replaced by easy to implement shift operations. This scheme has also been applied
to gradient values, activation values, and learning rates (Hollis and Paulos 1994, Simard and Graf 1994).

Work on limiting the number of weight levels has also been done in the design of Heaviside networks
for the computation of boolean functions (majority, parity, comparison, addition) and for the two-spiral
problem (Beiu 1996a, 1997). Beiu’s concern is to minimize the total number of bits required to represent
the weights of a network, since this is a realistic measure of the complexity of VLSI implementations.
Moreover, it opens up the possibility of comparing results obtained by learning algorithms with the entropy
(number of bits) upper bounds of the data set (Beiu 1996b).

Finally, we would like to point out that a comparative benchmarking study of quantization effects
on different neural network models and the improvements that can be obtained by weight discretization
algorithms has not yet been done. The accuracies listed in table E1.2.1 to E1.2.4 are therefore highly
biased by the different benchmarks that were used by the various authors.

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 E1.2:5

Neural network adaptations to hardware implementations

E1.2.3 Hardware nonidealities

Both in analog electronic and optical neural network implementations, computation suffers from drawbacks
which do not play an important role in digital hardware. Some characteristic examples of such nonidealities
inherent to analog computation are the spatial nonuniformity of components and nonideal responses. In this
section, examples of these nonidealities are presented, together with their effects on the learning behavior
of neural networks.

E1.2.3.1 Component nonuniformity

Variations between the on-chip components, such as multipliers (Cairns and Tarassenko 1994) and the read-
out of optical weight matrices (Robinson and Johnson 1992), are inevitable in analog hardware. These
nonuniformities are particularly troublesome when the training of the network is done off-chip without
taking these component variations into account (Fryeet al 1991). It is, however, widely claimed that chip-
in-the-loop or on-chip learning can compensate to a considerable extent for these nonuniformities (Card
and Schneider 1992). This is also intuitively clear because the use of the analog circuit in the forward pass
incorporates the nonuniformities in the learning process. This has been confirmed by experimental results,
for example for on-chip learning in backpropagation networks (Cairns and Tarassenko 1994, Dolenko
and Card 1995). Their research indicates that backpropagation learning can adapt to the nonuniformity
of multiplier gains which are caused by fabrication inaccuracies. The occurrence of additive offsets in
the multiplications and especially in weight adaptations do pose serious problems which are not easily
overcome by on-chip learning (Dolenko and Card 1995). A possible solution is the use of some dedicated
hardware in the weight adaptation circuitry which enables offset-compensation (Annema and Wallinga
1995).

E1.2.3.2 Nonideal response

Computations performed in hardware are approximations of the mathematical operations assumed to
be ideal in neural network models. This affects in particular the analog implementation of a linear
multiplication and the implementation of a nonlinear activation function like the widely used standard
sigmoid. The use of a linear multiplier with a reasonable operating range leads to a large area penalty in
VLSI implementations. Therefore, simple nonlinear multipliers are often preferable and are used in both
electronic (Lont and Guggenbühl 1992, Hollis and Paulos 1994, Reyneri 1995) and optical implementations
(Robinson and Johnson 1992, Neiberg and Casasent 1994). The claims on the learning behavior of a
neural network with nonlinear multipliers are rather contradictory. While Cairns and Tarassenko (1994)
and Dolenko and Card (1995) find the straightforward use of nonlinear multipliers in simulations of on-chip
learning in analog backpropagation networks leads to satisfactory results, Lont and Guggenbühl (1992) find
the standard backpropagation algorithm fails to converge with nonlinear synapses. Instead, Lont proposes
to incorporate nonlinear multipliers in the formulation of the backpropagation rule, which leads to good
results. A disadvantage of this approach is that an accurate model of the on-chip multiplier is needed.
This can be alleviated bychain rule perturbation learning(Hollis and Paulos 1994), which only performs
a forward pass through a multilayer network and hence incorporates the hardware characteristics directly
into the training. A solution sometimes applied in optical networks is the use of an additional weight
mask which complements and thereby compensates for the nonlinearities in the multiplier (Neiberg and
Casasent 1994).

Another problem for analog hardware is the requisite of an activation function that is similar to the
standard sigmoid. The incorporation of a model of a sigmoid-like hardware activation function in the
training algorithm can compensate for some inaccuracy (Lont and Guggenbühl 1992). This is another
example of the opportunism that often plays a role in the design of neural hardware: search for the
hidden advantages of apparent drawbacks and try to exploit these instead of trying to approximate the
existing mathematical model as closely as possible. Another approach is the use of a simplified activation
function, for example the replacement of the Gaussian function inradial basis networksby a triangular C1.6.2

one (Dogaruet al 1996), leading to a simplified hardware implementation. Additional difficulties arise
when the activation functions are implemented by optical hardware, for example in liquid crystal light
valves. These optical activation functions are characterized, among other nonidealities, by a gainβ that
differs greatly from the standard value of one, as can be seen in figure E1.2.1 where a sigmoid with a gain
of approximately 1/161 is depicted (Saxena and Fiesler 1995). While in analog electronics one can try to

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 E1.2:6

C1.6.2

Neural network adaptations to hardware implementations

 N
or

m
al

is
ed

 U
ni

ts
Write Light Intensity (µW / cm 2)

200 400 600 800 1000

 1.0

0.5

0

Figure E1.2.1. Response curve of an LCLV.

k
Wjk

∆Ε

 j

 perturbation of Wjk : Wjk

∆Wjk = η -

Figure E1.2.2. A schematic of the weight perturbation algorithm.

compensate for a nonstandard gain by including a gain stage, this is not possible in optical implementations.
In theory one could add additional optical components whose aim would be a modification of the effective
gain, but this would increase the complexity and cost of the system, as well as introducing new side effects.
A nice and simple way to solve this problem is by using an adapted backpropagation learning rule that is
based on a simple and precise relationship between the gain and two other network parameters (Thimmet
al 1996), which compensates for a nonstandard gain without any additional hardware, and shows superior
results (Moerlandet al 1995).

E1.2.4 Hardware-friendly learning algorithms

In this section a variety of learning algorithms that are well suited for hardware implementations of neural
networks are presented. Thesehardware-friendly learning algorithms(Moerland and Fiesler 1996) can be
divided into two classes, namely:

• adaptations of existing neural network learning rules that facilitate their hardware implementation and
• learning algorithms that are by their very conception suitable for hardware implementation.

Here, the emphasis will be on the first of these two classes of hardware-friendly learning algorithms.
An example of the second class iscellular neural networkswhich are of special interest for VLSI
implementation because of their sparse local connectivity: every unit of the network is a simple analog
processor that interacts only with its neighboring units; see the article by Chua and Roska (1993) for a
survey. Another example is the class of RAM-based networks which can be easily implemented with
standard available components. A recent overview of RAM-based networks and related implementation
aspects is given by Austin (1994).

Various hardware-friendlier alternatives have been proposed for several neural network learning rules,
especially with the objective to enableon-chip learning. The most significant ones are discussed in this
section, with an emphasis on hardware-friendly alternatives of the backpropagation algorithm for training
multilayer neural networks.

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 E1.2:7

Neural network adaptations to hardware implementations

E1.2.4.1 Perturbation algorithms

The most popular algorithm for the training of multilayer networks is thebackpropagation algorithm(see C1.2.3

for example the book by Rumelhartet al (1986)). However, the realization of large backpropagation
networks in analog hardware poses serious problems because of the need for separate or bidirectional
circuitry for the backward pass of the algorithm. Other problems are the need for an accurate derivative
of the activation function and the cascading of multipliers in the backward pass.

The general idea of perturbation algorithms is to obtain a direct estimate of the gradients by a slight
random perturbation of some network parameters, using the forward pass of the network to measure the
resulting network error. Thus, these on-chip training techniques not only eliminate the complex backward
pass but also are likely to be more robust to nonidealities occurring in hardware.

The two main variants of this class of algorithms arenode perturbationwhich is based on the
perturbation of the input value of a neuron, as for example themadaline-3rule (Widrow and Lehr 1990),C1.1.4

and weight perturbation, see for example the article by Jabri and Flower (1992). The basic concepts of
weight perturbation (figure E1.2.2) are easily explained by the observation that the gradient descent weight
update can be approximated by finite differences (↑ Wjk denotes the perturbation or change ofWjk):

1Wjk = −η · ∂E

∂Wjk

≈ −η · 1E

↑ Wjk

. (E1.2.2)

The madaline-3 rule is based on an application of the chain-rule that is standard in the derivation of the
backpropagation algorithm (sk denotes the input to neuronk and↑ sk its perturbation):

1Wjk = −η · ∂E

∂Wjk

= −η · ∂E

∂sk

· ∂sk

∂Wjk

≈ −η · 1E

↑ sk

· aj . (E1.2.3)

The main disadvantage of these perturbation algorithms is their sequential nature, as opposed to the weight
update calculation in the backpropagation algorithm which can, in principle, be performed in parallel.
The main differences between the madaline-3 rule and weight perturbation are the simpler addressing and
routing circuitry needed for the latter and the lower computational complexity of the madaline-3 rule.
As can be seen in table E1.2.3, weight perturbation also has a good performance with limited precision
weights (Xie and Jabri 1992). Moreover, it is more robust against nonidealities occurring in analog
hardware: nonuniformity, nonideal circuit response, and noise (Cairns and Tarassenko 1994). The reason
for this is that in this algorithm modeling of activation functions and multipliers does not need to be done,
since these form an integral part of the training algorithm. It is interesting to note that the derivation of
the madaline-3 rule does assume the multiplication to be linear which makes possible the reduction of
∂sk/∂Wjk to aj in equation (E1.2.3).

The sequential nature of these simple perturbation algorithms has led to more intricate variants which
perform some of the calculations in parallel. A simultaneous perturbation of all weights is a promising
alternative (Alspectoret al 1993, Cauwenberghs 1993), even when for a reliable estimate of the gradient
the results of several perturbations should be averaged or a very small and accurate perturbation is required.
Other variants use a semiparallel perturbation scheme such aschain rule perturbation (Hollis and Paulos
1994),fan-outor fan-in–outperturbation (Jabri 1994), andsummed weight neuronperturbation (Flower and
Jabri 1993). These semiparallel techniques perturb simultaneously all the weights feeding into or leaving
one neuron. An experimental comparison of these perturbation algorithms with an analog multilayer
perceptron chip (Kakadu) in-the-loop showed that the semiparallel techniques are best suited for effective
learning when the accuracy is low (Jabri 1994). The fan-in–out technique showed the best generalization
and training convergence results when the weights and weight updates were quantized to 6 bits.

E1.2.4.2 Local learning algorithms

The implementation of a learning rule can be greatly simplified if it only uses information that is locally
available (Palmieriet al 1993). This feature minimizes the amount of wiring and communication. Since
the backpropagation algorithm is not local, several local learning algorithms have been designed that avoid
a global backpropagation of error signals. An example is an anti-Hebbian learning algorithm that is suitable
for optical neural networks (Psaltis and Qiao 1993). The weight updates in this algorithm depend only on
the input and output of that layer and one global error signal. Although it is not a steepest-descent rule,
it is still guaranteed that the weights are updated in the descent direction. Another local learning rule has

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 E1.2:8

C1.2.3

C1.1.4

Neural network adaptations to hardware implementations

been developed by Brandt and Lin (1994) which uses only the rates of change of the outgoing weights of
a neuron. One of their algorithms is mathematically equivalent to the backpropagation algorithm, but the
measurement of the rates of change of the weights could be hard to implement. A promising approach is
taken in the Alopex algorithm (Venugopal and Pandya 1991, Unnikrishnan and Venugopal 1994) which
is a stochastic algorithm based on the correlation between individual weight changes and changes in the
network’s error measure. The main advantages of this approach are that the weights can be updated
synchronously and that no modeling of the multipliers and activation functions is needed.

E1.2.4.3 Networks with Heaviside functions

The design of a compact digital neural network can be simplified considerably when Heaviside functions
are used as activation functions instead of a differentiable sigmoidal activation function. While
training algorithms for perceptrons with Heaviside functions abound, training multilayer networks with
nondifferentiable Heaviside functions requires the development of new algorithms. One of the earliest
examples of such a learning rule is themadaline-2rule (Widrow and Lehr 1990), which is closely related
to the previously described madaline-3 rule. It is also based on a slight perturbation of the input to a
neuron, but in this case the training error is minimized by investigating the effect of an inversion of the
activation value of a neuron. If this inversion reduces the Hamming error on the output neurons, the
incoming weights of the inverted neuron are adapted with a perceptron training algorithm to reinforce this
inversion.

There is also a large variety ofconstructivealgorithms which gradually build a Heaviside network by
adding neurons and weights (Śmieja 1993). The basis of these algorithms is often formed by a perceptron
algorithm that is used to adapt the weights into the freshly added neurons. Recently, some digital and
mixed analog/digital architectures have been designed to be suitable for the implementation of a range of
these constructive algorithms (Moreno Arostegui 1995).

E1.2.4.4 Robustness

In section E1.2.3 several examples have already been given of the robustness of neural networks to
hardware nonidealities. Some research has also been devoted to the robustness of a network to unreliable
neurons. This unreliability can consist of sign inversions of hidden neuron values (Judd and Munro
1993) or destruction of hidden neurons (Kerlirzin and Réfrégier 1995). While neural networks trained by
standard learning algorithms are notinherently fault tolerant, the incorporation of the expected faults in
the training phase leads to remarkable improvements. An illustration of this fact is an adaptation of the
backpropagation learning rule that uses only a random subset of hidden neurons for each iteration. The
trained network is far more robust to the destruction of hidden neurons and shows performance comparable
to the noiseless case (Kerlirzin and Réfrégier 1995). This is closely related to the injection of random noise
in the weight values during the training of a multilayer neural network, whose effects have been elaborately
discussed by Murray and Edwards (1994). It is demonstrated both analytically and experimentally that this
synaptic noise improves the network’s fault tolerance to weight damage, generalization to unseen patterns,
and training time. Similar results have been obtained when injecting additive noise into the weights of
recurrent neural networks (Jimet al 1994).

E1.2.4.5 Other hardware-friendly neural network models

Although the majority of neural hardware is concerned with the implementation of multilayer networks,
because of their wide-ranging applicability, most other popular neural network models have also been
implemented in hardware. A few examples of the use of hardware-friendly learning in self-organizing
feature maps and recurrent networks are given here.

Self-organizing maps. One of the requisites of a neural network hardware implementation is the effectiveC2.1.1

use of the processor resources. In general, batch processing is an appropriate alternative to obtain better
parallelisation. Kohonen’s original algorithm, however, has both an on-line selection of the neuron closest
to the input pattern, thewinner neuron, and an on-line weight update. Two possible variants are to have a
batch winner selection combined with either a batch or an on-line weight update. Vassilaset al (1995) show
the convergence properties of these two variants to be comparable with those of the original algorithm.

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 E1.2:9

C2.1.1

Neural network adaptations to hardware implementations

Recurrent networks.Two widely used paradigms for training recurrent networks areBoltzmann machineC1.4

learning and mean field theory learning. The parallelism of a potential hardware implementation is seriously
hampered by the required asynchronous update of the neurons. Therefore, in both analog (Pujolet al
1994) and optical (Petersonet al 1990) implementations, a synchronous neuron update is used. Another
characteristic of the Boltzmann machine is the use ofsimulated annealingto gradually increase the gainC1.4.2

of a neuron’s activation function. In Bellcore’s implementation of a Boltzmann machine this annealing
schedule has been replaced by a gradual decrease of additive noise (Alspector 1992), while the main idea
of mean field theory learning is to replace the annealing strategy by a deterministic approximation.

E1.2.5 Summary and conclusions

In this section an overview has been given of a variety of adaptations of neural network learning to enable
their successful hardware implementation. These problems can be as general as the effects of a quantization
of the network parameters or those of the nonidealities of hardware components. Other problems are more
specific for a certain neural network model, such as the complications related to the implementation of the
backward pass of the standard backpropagation algorithm.

The effects of quantization on a range of neural network models have been outlined, and weight
discretization algorithms have been reviewed. These estimations of the required accuracy for well-known
learning algorithms and several of the weight discretization algorithms described are already in use in some
large-scale hardware implementations. Designers of digital neurocomputers, for example, profit from the
fact that the required weight accuracy for backpropagation training is around 16 bits (Mauduitet al 1992).
An example of a successful implementation of a weight discretization algorithm is Battiti’s TOTEM-chip
which uses a weight accuracy of 4 bits (Battiti and Tecchiolli 1994).

Compared to the state of the art in digital neural network implementations, the design of analog
neural network implementations with nonidealities such as component nonuniformity, nonideal responses,
and system noise, is still in a more experimental state. Implementations have therefore been limited to
small-scale networks (Leong and Jabri 1995) and it is yet to be shown whether reliable large networks can
be realized in practice by analog techniques. An important step towards this goal could be the possibility
of on-chip learning, since it has been exemplified that neural network models are remarkably robust to
hardware nonidealities when these are incorporated in the training of the network. The development of
hardware-friendly learning rules that form an alternative for algorithms which are intricate to implement,
like the backpropagation algorithm, is therefore essential. The efficacy of perturbation algorithms illustrates
the usefulness of this approach and the first implementations using these training algorithms are emerging
(Leong and Jabri 1995).

References

Abramson S, Saad D and Marom E 1993 Training a neural network with ternary weights using the CHIR algorithm
IEEE Trans. on Neural Networks4 997–1000

Ackley D H, Hinton G E and Sejnowski T J 1985 A learning algorithm for Boltzmann machinesCogn. Sci.9 147–69
Alspector J, Jayakumar A and Luma S 1992 Experimental evaluation of learning in a neural microsystemAdvances

in Neural Information Processing Systems (NIPS91)vol. 4, (San Mateo, CA: Morgan Kaufmann) pp 871–78
Alspector J, Meir R, Yuhas B and Jayakumar A 1993 A parallel gradient descent method for learning in analog VLSI

neural networksAdvances in Neural Information Processing Systems (NIPS92)vol. 5 (San Mateo, CA: Morgan
Kaufmann) pp 836–44

Annema A J and Wallinga H 1995 Analog weight adaptation hardwareNeural Processing Lett.2 1–4
Asanovíc K and Morgan N 1991 Experimental determination of precision requirements for back-propagation training of

artificial neural networksProc. 2nd Int. Conf. MicroNeuro’91, M¨unchen, Germany, October 1991ed U Ramacher,
U Rückert and J A Nossek pp 9–15

Austin J 1994 A review of RAM based neural networksProc. 4th Int. Conf. on Microelectronics for Neural Networks
and Fuzzy Systems, Turin, Italy, September 26–28, 1994pp 58–66

Balzer W, Takahashi M, Ohta J and Kyuma K 1991 Weight quantization in Boltzmann machinesNeural Networks4
405–9

Battiti R and Tecchiolli G 1994 TOTEM: A digital processor for neural networks and reactive Tabu searchProc. 4th
Int. Conf. on Microelectronics for Neural Networks and Fuzzy Systems, Turin, Italy, September 26–28, 1994pp
17–25

——1995 Training neural nets with the reactive Tabu searchIEEE Trans. on Neural Networks6 1185–200

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 E1.2:10

C1.4

C1.4.2

Neural network adaptations to hardware implementations

Beiu V 1996a Direct synthesis of neural networksProc. 5th Int. Conf. on Microelectronics for Neural Networks and
Fuzzy Systems, Lausanne, Switzerland, February 12–14, 1996pp 257–64

——1996b Entropy bounds for classification algorithmsNeural Network World6 497–505
——1997VLSI Complexity of Discrete Neural Networks(New York: Gordon and Breach) in press
Brandt R D and Lin F 1994 Supervised learning in neural networks without explicit error back-propagationProc.

32nd Allerton Conf. on Communication, Control, and Computing, Monticello, Illinois, September 28–30, 1994pp
294–303

Cairns G and Tarassenko L 1994 Learning with analogue VLSI MLPsProc. 4th Int. Conf. on Microelectronics for
Neural Networks and Fuzzy Systems, Turin, Italy, September 26–28, 1994pp 67–76

Campbell C and C Perez Vincente 1995 The target switch algorithm: a constructive learning procedure for feed-forward
neural networksNeural Comput.7 1245–64

Card H C and Schneider C R 1992 Analog CMOS neural circuits—in situ learningInt. J. Neural Syst.3 103–24
Cauwenberghs G 1993 A fast stochastic error-descent algorithm for supervised learning and optimizationAdvances in

Neural Information Processing Systems (NIPS92), vol. 5 (San Mateo, CA: Morgan Kaufmann) pp 244–51
Chua L O and Roska T 1993 The CNN paradigmIEEE Trans. on Circuits and Systems-I: Fundamental Theory and

Applications40 147–56
Chua L O and Yang L 1988 Cellular neural networks: theoryIEEE Trans. on Circuits and Systems35 1257–72
Coggins R and Jabri M 1994 Wattle: A trainable gain analogue VLSI neural networkAdvances in Neural Information

Processing Systems (NIPS93)vol. 6 (San Mateo, CA: Morgan Kaufmann) pp 874–81
Dogaru R, Murgan A T, Ortmann S and Glesner M 1996 A modified RBF neural network for efficient current-mode

VLSI implementationProc. 5th Int. Conf. on Microelectronics for Neural Networks and Fuzzy Systems, Lausanne,
Switzerland, February 12–14, 1996pp 265–70

Dolenko B K and Card H C 1995 Tolerance to analog hardware of on-chip learning in backpropagation networks
IEEE Trans. on Neural Networks6 1045–52

G Dündar and Rose K 1995 The effects of quantization on multilayer neural networksIEEE Trans. on Neural Networks
6 1446–51

Fahlman S E and Lebiere C 1990 The cascade-correlation learning architectureAdvances in Neural Information
Processing Systems (NIPS89)vol. 2 (San Mateo, CA: Morgan Kaufmann) pp 524–32

Fiesler E, Choudry A and Caulfield H J 1988 Weight discretization in backward error propagation neural networks
Neural Networks1 380 (special supplement with ‘Abstracts 1st Annual (INNS) Meeting’)

——1990 A weight discretization paradigm for optical neural networksProc. Int. Congr. on Optical Science and
EngineeringSPIE vol 1281 (Bellingham, WA: SPIE) pp 164–73

Flower B and Jabri M 1993 Summed weight neuron perturbation: anO(N) improvement over weight perturbation
Advances in Neural Information Processing Systems (NIPS92)vol. 5 (San Mateo, CA: Morgan Kaufmann) 212–9

Frye R C, Rietman E A, and Wong C C 1991 Back-propagation learning and nonidealities in analog neural network
hardwareIEEE Trans. on Neural Networks2 110–17

Fukushima K 1980 Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition
unaffected by shift in positionBiol. Cybernet.36 193–202

Grossman T 1990 The CHIR algorithm for feedforward networks with binary weightsAdvances in Neural Information
Processing Systems (NIPS89)vol. 2 (San Mateo, CA: Morgan Kaufmann) pp 516–23

Hendrich N 1996 A scalable architecture for binary couplings attractor neural networksProc. 5th Int. Conf. on
Microelectronics for Neural Networks and Fuzzy Systems, Lausanne, Switzerland, February 12–14(Los Alamitos,
CA: IEEE Computer Society Press) pp 117–124

Hoehfeld M H and Fahlman S 1992 Learning with limited numerical precision using the cascade-correlation algorithm
IEEE Trans. on Neural Networks3

Holler M, Tam S, Castro H and Benson R 1989 An electrically trainable artificial neural network (ETANN) with
10240 ‘floating gate’ synapsesProc. Int. Joint Conf. on Neural Networks (IJCNN89), Washington, DCvol. 2, pp
191–6

Hollis P W and Paulos J J 1994 A neural network learning algorithm tailored for VLSI implementationIEEE Trans.
on Neural Networks5 784–91

Holt J L and J-N Hwang 1993 Finite precision error analysis of neural network hardware implementationsIEEE Trans.
on Computers42 1380–9

Hopfield J J 1982 Neural networks and physical systems with emergent collective computational abilitiesProc. National
Academy of Sciences USA79 2554–8

Jabri 1994 Practical performance and credit assignment efficiency of analog multi-layer perceptron perturbation based
training algorithmsSEDAL Technical Report 1-7-94Systems Engineering and Design Automation Laboratory,
Sydney University Electrical Engineering, NSW 2006, Australia

Jabri M and Flower B 1992 Weight perturbation: an optimal architecture and learning technique for analog vlsi
feedforward and recurrent multilayer networksIEEE Trans. on Neural Networks3 154–7

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 E1.2:11

Neural network adaptations to hardware implementations

Jim K, Giles C L and Horne B G 1994 Synaptic noise in dynamically-driven recurrent neural networks: convergence
and generalizationTechnical report UMIACS-TR-94-89 / CS-TR-3322Institute for Advanced Computer Studies,
University of Maryland, College Park, MD 20742, USA

Johannet A, Personnaz L, Dreyfus G, J-D Gascuel and Weinfeld M 1992 Specification and implementation of a digital
Hopfield-type associative memory with on-chip trainingIEEE Trans. on Neural Networks3 529–39

Judd S and Munro P W 1993 Nets with unreliable hidden nodes learn error-correcting codesAdvances in Neural
Information Processing Systems (NIPS92)vol 5 (San Mateo, CA: Morgan Kaufmann) pp 89–96

Kerlirzin P and Ŕefrégier P 1995 Theoretical investigation of the robustness of multilayer perceptrons: analysis of the
linear case and extension to nonlinear networksIEEE Trans. on Neural Networks6 560–71

Kohonen T 1989Self-Organization and Associative Memory3rd edn (Berlin: Springer Verlag)
——1993 Things you haven’t heard about the self-organizing mapProc. 1993 IEEE Int. Conf. on Neural Networks,

San Francisco, California, March 28–April 1, 1993vol. 3, pp 1147–56
Leong P H W andJabri M A 1995 A low-power VLSI arrhythmia classifierIEEE Trans. on Neural Networks6

1435–45
Lont J and Guggenb̈uhl W 1992 Analog CMOS implementation of a multilayer perceptron with nonlinear synapses

IEEE Trans. on Neural Networks3 385–92
Lyon R F and Yaeger L S 1996 On-line hand-printing recognition with neural networksProc. 5th Int. Conf. on

Microelectronics for Neural Networks and Fuzzy Systems, Lausanne, Switzerland, February 12–14, 1996pp 201–
12

Marchesi M, Orlandi G, Piazza F and Uncini A 1993 Fast neural networks without multipliersIEEE Trans. on Neural
Networks4 53–62

Mauduit N, Duranton M, Gobert J and J-A Sirat 1992 Lneuro 1.0: a piece of hardware lego for building neural
network systemsIEEE Trans. on Neural Networks3 414–22

Moerland P and Fiesler E 1996 Hardware-friendly learning algorithms for neural networks: an overviewProc. 5th
Int. Conf. on Microelectronics for Neural Networks and Fuzzy Systems, Lausanne, Switzerland, February 12–14,
1996pp 117–24

Moerland P, Fiesler E and Saxena I 1995 The effects of optical thresholding in backpropagation neural networksProc.
Int. Conf. on Artificial Neural Networks (ICANN95), Paris, France, October 9–13, 1995vol. 2, pp 339–43

——1996 Multilayer neural networks for all-optical implementation, in preparation
Moreno Arostegui J M 1995 VLSI architectures for evolutive neural modelsPhD ThesisTechnical University of

Catalunya, Department of Electronics Engineering, Barcelona, Spain
Murray A F and Edwards P J 1994 Enhanced MLP performance and fault tolerance resulting from synaptic weight

noise during trainingIEEE Trans. on Neural Networks5 792–802
Neiberg L and Casasent D 1994 High-capacity neural networks on nonideal hardwareAppl. Opt.33 7665–75
Palmieri F, Zhu J and Chang C 1993 Anti-Hebbian learning in topologically constrained linear networks: a tutorial

IEEE Trans. on Neural Networks4 748–61
Peterson C, Redfield S, Keeler J D and Hartman E 1990 An optoelectronic architecture for multilayer learning in a

single photorefractive crystalNeural Comput.2 25–34
Pich́e S W 1995 The selection of weight accuracies for madalinesIEEE Trans. on Neural Networks6 432–45
Protzel P W, Palumbo D L and Arras M K 1993 Performance and fault-tolerance of neural networks for optimization

IEEE Trans. on Neural Networks4 600–14
Psaltis D and Qiao Y 1993 Adaptive multilayer optical networksProgress in Opticsvol. 31, ed E Wolf (Amsterdam:

Elsevier) ch 4, pp 227–61
Pujol H, Klein O, Belhaire E and Garda P 1994 RA: an analog neurocomputer for the synchronous Boltzmann machine

Proc. 4th Int. Conf. on Microelectronics for Neural Networks and Fuzzy Systems, Turin, Italy, September 26–28,
1994pp 449–55

Reyneri L M and Filippi E 1991 An analysis on the performance of silicon implementations of backpropagation
algorithms for artificial neural networksIEEE Trans. on Computers40 1380–9

Reyneri L M 1995 A performance analysis of pulse stream neural and fuzzy computing systemsIEEE Trans. on
Circuits and Systems-II: Analog and Digital Signal Processing42 642–60

Robinson M G and Johnson K M 1992 Noise analysis of polarization-based optoelectronic connectionist machines
Appl. Opt.31 263–72

Rueping S, Goser K and Rueckert U 1994 A chip for selforganizing feature mapsProc. 4th Int. Conf. on
Microelectronics for Neural Networks and Fuzzy Systems, Turin, Italy, September 26–28, 1994pp 26–33

Rumelhart D, Hinton G and Williams R 1986 Learning internal representations by error propagationParallel
Distributed Processing: Explorations in the Microstructure of Cognitionvol. 1: Foundations(Cambridge, MA:
MIT Press) pp 318–362

Säckinger E, Boser B E, Bromley J, LeCun Y and Jackel L D 1992 Application of the ANNA neural network chip to
high-speed character recognitionIEEE Trans. on Neural Networks3 498–505

Sakaue S, Kohda T, Yamamoto H, Maruno S and Shimeki Y 1993 Reduction of required precision bits for
backpropagation applied to pattern recognitionIEEE Trans. on Neural Networks4 270–4

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 E1.2:12

Neural network adaptations to hardware implementations

Saxena I and Fiesler E 1995 Adaptive multilayer optical neural network with optical thresholdingOpt. Eng.34 2435–40
Simard P Y and Graf H P 1994 Backpropagation without multiplicationAdvances in Neural Information Processing

Systems (NIPS93)vol. 6, ed J D Cowan, G Tesauro and J Alspector pp 232–39 (San Mateo CA: Morgan
Kaufmann)

Śmieja F J 1993 Neural network constructive algorithms: trading generalization for learning efficiency?Circuits Syst.
Signal Processing12 331–74

Takahashi M, Oita M, Tai S, Kojima K and Kyuma K 1991 A quantized back propagation learning rule and its
application to optical neural networksOpt. Comput. Processing1 175–82

Tang C Z and Kwan H K 1993 Multilayer feedforward neural networks with single power-of-two weightsIEEE Trans.
on Signal Processing41 2724–7

Thimm G, Moerland P and Fiesler E 1996 The interchangeability of learning rate and gain in backpropagation neural
networksNeural Comput.8 251–60

Thiran P, Peiris V, Heim P and Hochet B 1994 Quantization effects in digitally behaving circuit implementations of
Kohonen networksIEEE Trans. on Neural Networks5 450–8

Unnikrishnan K P and Venugopal K P 1994 Alopex: a correlation-based learning algorithm for feedforward and
recurrent neural networksNeural Comput.6 469

Vassilas N, Thiran P and Ienne P 1995 How to modify Kohonen’s self-organizing feature maps for an efficient digital
parallel implementationProc. Int. Conf. on Artificial Neural Networks, Cambridge, June 26–28, 1995

Venugopal K P and Pandya A S 1991 Alopex algorithm for training multilayer neural networksProc. Int. Joint Conf.
on Neural Networks (IJCNN), Singapore, November, 1991vol 1 pp 196–201

Verleysen M, Sirletti B, Vandemeulebroecke A and Jespers P G A1989 A high-storage capacity content-addressable
memory and its learning algorithmIEEE Trans. on Circuits and Systems36 762–6

White B A and Elmasry M I 1992 The digi-neocognitron: a digital neocognitron neural network model for VLSI
IEEE Trans. on Neural Networks3 73–85

Widrow B and Lehr M A 1990 30 years of adaptive neural networks: perceptron, madaline, and backpropagation
Proc. IEEE78 1415–42

Xie Y and Jabri M A 1992 Training limited precision feedforward neural networksProc. 3rd Australian Conf. on
Neural Networkspp 68–71

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 E1.2:13

