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Abstract.  
The qualit y of Support Vector Machines (SVM) binary classifi cation of spatial environmental data is 

evaluated with geostatistical nonparametric conditional stochastic simulations - a spatial Monte Carlo model based 
on sequential indicator simulation algorithm. Equally probable reali zations are generated and compared with SVM 
classifi cation. Uncertainty of predictions is described by conditional standard deviations. Case study is based on the 
classifi cation of porosity data. Only binary problem is considered. Results obtained confirm the efficiency of the 
SVM binary classifi cation of spatial data.  
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Introduction 

The report present first results on evaluation of SVM by using geostatistical models of conditional spatial 
simulations. Recently SVM were successfull y applied to the problem of binary and multi -class classification of 
environmental and pollution data [Gilardi et al 2000, Kanevski et al 2000]. It was shown that SVM are flexible data-
adaptive classification models and can be adapted to environmental spatial data. Deterministic outputs of SVM 
classification were compared with geostatistical probabili stic model indicator kriging. Indicator kriging is a basic 
model for the estimation of a nonparametric local probabilit y density functions [Goovaerts 1997; Deutsch and 
Journel 1998, Chiles and Delfiner 1999] and nonparametric method for the classification of spatial data. Indicator 
kriging gives unique the “best” estimate of the class probabilit y. The main objective of this paper is to apply 
conditional stochastic simulation model for binary classification problem and to generate many equally probable 
reali zations of the simulator. Analysis (post-processing) of similarity and dissimilarity between reali zations 
describes spatial uncertainty and variabilit y of the spatial data. Sequential indicator algorithms (SISIM) is used to 
generate reali zations of categorical (discrete) variable. SISIM models reproduces one and two-points (described by 
variograms) statistics. For the completeness of work the basis of SVM binary classification and indicator conditional 
stochastic simulations are presented.  

In general the problem is the following. There are spatiall y distributed categorical (2 classes) data (high and low 
level of porosity). The objective is to complete an original pattern (data measured on a nonhomogeneous monitoring 
network) and to prepare a map of classes (predictions on a dense regular grid). SVM binary model is used in a 
manner presented in [Gilardi et al 1999, Kanevski et al 2000]. Conditional stochastic model using sequential 
indicator simulation approach is applied to these categorical data to generate many equally probable reali zations. 
Conditional simulations satisfy the following conditions: 1) simulated reali zations reproduce representative 
histogram (after declustering if necessary) of the original data; 2) simulated reali zations reproduce spatial variabilit y 
described by semivariograms; 3) conditional simulations honor the data - at the sampling points simulated values 
equals to the original/measured data. 

The reali sations are determined by the conditional data, simulation model and random seed. From this point of 
view they are “equally probable” .  
 
Support Vector Machines Classification 

Let us present short description of SVM application to the classification problems. Detailed theoretical 
presentation of the SVM can be found in Burgess (1998) and Vapnik (1998) on which the presentation below is 
based.  

Traditional introduction to the SVM classification is the following: 1) binary (2 class) classification of linearly 
separable problem; 2) binary classification of linearly non-separable problem, 3) non-linear binary problem 4) 
generali sations to the multi -class classification problems. First results on application of support vector classifiers 
(binary classification of pollution data, multi -class classification of environmental soil types data) can be found in 
Gilardi et al. (2000) and Kanevski et al. (2000a). 

The following problem is considered. A set S of points (xi) is given in R2 (we are working in a two dimensional 

xi = [x1, x2] space). Each point xi belongs to either of two classes and is labeled by yi ∈  { -1,+1} . The objective is to 
establi sh an equation of a hyper-plane that divides S leaving all the points of the same class on the same side while 
maximising the minimum distance between either of the two classes and the hyper-plane – maximum margin hyper-
plane.  

Optimal hyper-plane with the largest margins between classes is a solution of the constrained optimisation 
problem considered below. 

Linearly separable case 

Let us remind that data set S is linearly separable if there exist RbRW ∈∈ ,2  , such that: 

NibXWY i
T

i ,...1   ,1)( =+≥+     (1) 

The pair (W,b) defines a hyper-plane of equation 0)( =+ bXWT . 

Linearly separable problem: Given the training sample {Xi, Yi} find the optimum values of the weight vector W 
and bias b such that they satisfy constraints: 
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NibXWY i
T

i ,...1   ,1)( =+≥+     (2) 

And the weight vector W minimises the cost function (maximisation of the margins): 

2/)( WWWF T=       (3) 

The cost function is a convex function of W and the constraints are linear in W.  

This constrained optimization problem can be solved by using Lagrange multipliers. Lagrange function is 
defined by: 

[ ]∑
=

−+−=
N

i
i

T
ii

T bXWYXWbWL
1

1)(2/),,( αα  

where Lagrange multipliers 0≥iα . 

The solution of the constrained optimisation problem is determined by the saddle point of the Lagrangian 
function ),,( αbWL which has to be minimised with respect to W and b and to be maximised with respect to α . 

Application of optimalit y condition to the Lagrangian function yields: 

∑
=

=
N

i
iii XYW

1

α       (4) 

∑
=

=
N

i
iiY

1

0α        (5) 

Thus, the solution vector W is defined in terms of an expansion that involves the N training data. Because of 
constrained optimisation problem deals with a convex cost function, it is possible to construct dual optimisation 
problem. The dual problem has the same optimal value as the primal problem, but with the Lagrange multipliers 
providing the optimal solution.  

The dual problem is formulated as follows: maximise the objective function: 

∑ ∑
= =

−=
N

i

N

i
j

T
ijijii XXYYQ

1 1

)2/1()( αααα    (6) 

Subject to the constraints: 

∑
=

=
N

i
iiY

1

0α        (7) 

1,...Ni ,0 =≥iα       (8) 

Note that the dual problem is presented only in terms of the training data. Moreover, the objective function Q(α) 
to be maximized depends only on the input patterns in the form of a set of dot products {Xi

TXj} i=1,2,…N . 

After determining optimal Lagrange multipliers 0iα , the optimum weight vector is defined by (4) and the bias is 

calculated as follows: 

1for   ,1 )( +=−= sS
i

T YXWb  

 

Note that from the Kuhn-Tucker conditions it follows that: 
 

[ ] 01)( =−+ bXWY i
T

iiα     (9) 

 

Only  iα  that can be nonzero in this equation are those for which constraints are satisfied with the equalit y sign. 

The corresponding points Xi , called Support Vectors, are the points of the set S closest to the optimal separating 
hyper-plane. In many applications number of support vectors is much less that original data points. The problem of 
classifying a new data point X is simply solved by computing: 
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)()( bXWsignXF i
T +=    (10) 

with the optimal weights W and bias b.  

SVM classification of non-separable data: Soft margin classifier 

In case of linearly non-separable set it is not possible to construct a separating hyper-plane without allowing 
classification error. The margin of separation between classes is said to be soft if training data points violate the 
condition of linear separabilit y and the primal optimization problem is changed by using slack variables. 
Problem is posed as follows: given the training sample {Xi,Yi} find the optimum values of the weight vector W and 
bias b such that they satisfy constraints: 

ibXWY iii
T

i ∀≥−+≥+  ,0  ,1)( ξξ   (11) 

The weight vector W and the slack variables ξ i minimize the cost function: 

∑
=

+=
N

i
i

T CWWWF
1

2/)( ξ     (12) 

where C is a user specified parameter (regularisation parameter is proportional to 1/C). 

The dual optimization problem is the following: given the training data maximize the objective function (find the 
Lagrange multipliers): 

∑ ∑
= =

−=
N

i

N

i
j

T
ijijii XXYYQ

1 1

)2/1()( αααα   (13) 

subject to the constraints (7) and: 
 

1,...Ni ,0 =≤≤ Ciα      (14) 
 

Note that neither the slack variables nor their Lagrange multipliers appear in the dual optimization problem.  

The parameter C controls the trade-off between complexity of the machine and the number of non-separable 
points. The parameter C has to be selected by the user. This can be done usually in one of two ways: 1) C is 
determined experimentall y via the standard use of a training and testing data sets, which is a form of re-sampling; 
and 2) It is determined analyticall y by estimating VC dimension and then by using bounds on the generali zation 
performance of the machine based on a VC dimension (Vapnik, 1998).  

SVM non-linear classification 

In most practical situations the classification problems are non-linear and the hypothesis of linear separation in 
the input space is too restrictive. The basic idea of SVM is: 1) to map the data into a high dimensional feature space 
(possibly of infinite dimension) via a non-linear mapping and 2) construction of an optimal hyper-plane (application 
of the linear algorithms described above) for separating features. The first item is in agreement of Cover’s theorem 
on the separabilit y of patterns which states that input multidimensional space may be transformed into a new feature 
space where the patterns are linearly separable with high probabilit y, provided: 1) the transformation is non-linear; 
and 2) the dimensionalit y of the feature space is high enough (Haykin, 1999). Cover’s theorem does not discuss the 
optimalit y of the separating hyper-plane. By using Vapnik’s optimal separating hyper-plane VC dimension is 
minimised and generali sation is achieved. Let us remind that in the linear case the procedure requires only the 
evaluation of dot products.  

Let { }
mjj x

,...1
)(

=
ϕ  denote a set of non-linear transformation from the input space to the feature space; m – is a 

dimension of the feature space. Non-linear transformation is defined a priori.  

In the non-linear case the optimization problem in the dual form is following: given the training data maximize 
the objective function (find the Lagrange multipliers): 

∑ ∑
= =

−=
N

i

N

i
j

T
ijijii XXKYYQ

1 1

)()2/1()( αααα    (15) 
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Subject to the constraints (7) and (14), the kernel in (15) is: 

∑
=

==
m

j
jj

T YXYXYXK
1

)()()()(),( ϕϕϕϕ    (16) 

Thus, we may use inner-product kernel K(X,Y) to construct the optimal hyper-plane in the feature space without 
having to consider the feature space itself in expli cit form.  

The optimal hyper-plane is now defined as: 

∑
=

+=
N

j
jjj bXXKYXf

1

),()( α     (17) 

Finall y, the non-linear decision function is defined by the following relationship: 

[ ]bXXKWsignXF j
T += ),()(     (18) 

The requirement on the kernel K(X, Xj) is to satisfy Mercer’s conditions (Vapnik 1998). Three common types of 
Support Vector Machines are widely used: 

Polynomial kernel: 

p
i

T
j XXXXK )1(),( +=      (19) 

where power p is specified a priori by the user. Mercer’s conditions are always satisfied. 

Radial basis function (RBF) kernel: 

{ }22
2/exp),( σjj XXXXK −−=     (20) 

where the kernel bandwidth σ (sigma value) is specified a priori by the user. In general, Mahalanobis distance 
can be used. Mercer’s conditions are always satisfied. 

Two-layer perceptron: 

{ }00tanh),( ββ += j
T

j XXXXK     (21) 

Mercer’s conditions are satisfied only for some values of β0  β1. 

For all three kernels (learning machines), the dimensionalit y of the feature space is determined by the number of 
support vectors extracted from the training data by the solution to the constrained optimization problem. In contrast 
to RBF neural networks, the number of radial basis functions and their centers are determined automaticall y by the 
number of support vectors and their values. In the present study only the results obtained with the RBF kernel are 
presented.  

SVM usually are trained (tuning of hyperparameters, li ke kernel bandwidth in RN`BF kernel) by splitti ng data 
into training and testing data sets. The same technique was applied in this study. Detail s can be found in [Kanevski 
et al 2000]  
 
Conditional Stochastic Simulations 

Principles of Sequential Simulations 

Sequential simulation is the only truly general simulation algorithm. The reali zations are continuous functions 
(diffusive models), or piecewise continuous with fixed or random discontinuities (jump models). The idea of 
sequential simulations is well known and was introduced to geostatistical society by Alabert and Massonat in 1990. 
We present sequential simulation approach following presentation in [Chiles and Delfiner, 1999].  

Let us consider a vector-valued random variable Z=(Z1, Z2 , … , ZN )T  for which a reali zation of the subvector 
(Z1, Z2 , … , ZM )T  is known and equal to (z1, z2 , … , zM )T (0≤ M<N). The distribution of the vector Z  conditional 
on Zi = zi (I=1,2,…,M) can be factorized in the form 
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(22) 

Using this factorization random vector Z  can be simulated sequentiall y by randomly selecting Zi from the 
conditional distribution Pr{ Zi<zi | z1, z2 , … zi -1} for i= M+1,…, N. and including the outcome zi in the conditioning 
data set for the next step.  

This procedure of decomposition of joint pdf into product of conditional pdfs is very general and can be used for 
spatial random functions as well . Let us remind that spatial function is a collection of random variables. It makes 
possible the construction of both a nonconditional (M=0) and conditional (M>0) simulations. The same procedure 
can be applied to co-simulation of several nonindependent random functions. It produces simulations that match not 
only the covariance but also the spatial distribution. In general, it is not known where to take conditional 
distributions. But for a Gaussian random function with known mean, the conditional distribution is Gaussian with 
mean and variance obtained from simple kriging.  

Sequential simulation is a theoreticall y simple and general simulation algorithm that is conditional by 
construction. Due to implementation problems some approximations are needed. The tests showed that these 
approximations do not have significant impact on the reproduction of the underlying Gaussian model [Gomez-
Hernandez and Cassiraga 1994]. 

Sequential Indicator Simulations 

The model is based on the principles of sequential simulation approach. But instead of working with continuous 
Gaussian random function we are working with indicator transformed data (or classes). Sequential indicator 
simulation (SIS) can be used both for the nonparametric simulations of continuous random fields, as well as for 
categorical variables. As in the case of indicator kriging, the indicator approach allows to account for class-specific 
patterns of spatial continuity through different indicator variogram models. Let us remind that in Gaussian 
simulation spatial variabilit y is characterized by a single semivariogram function. 

Indicator simulations are well suited for categorical variables simulations as well as for continuous variables.  

The procedure of SIS of continuous variable is the following (see, e.g. Goovaerts 1997):  

Discretize the range of variation into z into (K+1) classes using K threshold zk. Transform each datum z(uαα) into 
a vector of hard indicator data: 





î

 =≤

=
otherwise                           0

1,...Kk   )z(u if    1
);( k

k

z
zui α

α   (23) 

Define a random path visiting each node of the grid only once.  

At each node:   

Determine the K ccdf values [F(u´; zk|(n)]* using any of the indicator kriging algorithms: simple, ordinary, 
median, indicator co-kriging or probabilit y kriging. The conditioning information consists of indicator transforms 
(and uniform transforms for probabilit y kriging) of neighboring original z-data and previously simulated z-values.  

Correct for any order relation deviations. Then build a complete ccdf model [F(u´; z|(n)]* , ∀  z, using the 
interpolation/extrapolation algorithms 

Draw a simulated value from that ccdf 

Add the simulated value to the conditioning data set 

Proceed to the next node along the random path. 

Repeat the entire procedure with a different random path to generate another reali zation.  
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At each node, the simulation can be considered as a two steps procedure: a simulated class-value (thresholds) is 
first assigned to the grid node; a simulated value is then drawn from that class. Consequently, indicator-based 
algorithms guarantee approximate reproduction of the K class proportions and corresponding indicator 
semivariograms and not reproduction of the cdf and semivariogram of the continuous z-values. Actuall y, 
approximation of one-point and two-point statistics by SIS depends on several factors: discretization level (number 
of thresholds), indicator kriging procedure; interpolation/extrapolation models used to increase resolution of 
modeled cdf.  

Simulation of Categorical Variables 

Let us consider simulation of categorical variables[Deutsch and Journel 1997]. By definition categorical spatial 
function consists of K mutually exclusive categories sk k= 1,…,K. At any location only one class can be detected. 

Let i(u; sk) be the indicator of category sk  set it to 1 if  u∈  sk  and zero otherwise.  

Direct kriging of the indicator variable i(u; sk) provides an estimate/model for the probabilit y that  sk prevails at 
location u.  

{ } [ ]kk

n

kk psuIpnsuIob −+== ∑
=

);()(|1);(Pr
1

*
α

α
αλ   (25) 

where pk = E{I(u;sk)} ∈  [0,1]  is the marginal frequency of category sk inferred e.g. from the declustered 
proportion of data of type sk . The weights are given by simple indicator kriging equations using indicator 
covariances of corresponding classes.  

When the average proportions vary locall y, one can explicitl y provide the simple indicator kriging with smoothly 
varying local proportions.  

The procedure of sequential simulation of categorical variables implemented in GSLIB is the following.  

At each node u along the random path, indicator kriging followed by order relation correction provides K 
estimated probabiliti es pk(u|(ci)), k= 1,…K . The conditioning information (ci) consists of both the original data 
and the previously simulated indicator values for categories sk  

Next, define any ordering of the K categories, say 1,..K. This ordering defines a cdf-type scaling of the 
probabilit y interval [0,1] with K intervals. 

Draw a random number p uniformly in [0,1]. The interval in which p fall s determines the simulated category at 
location u. 

Update all K indicator data sets with this new simulated information, and proceed to the next location along with 
the random path. 

The arbitrary ordering of the K probabiliti es does not affect which category is drawn nor the spatial distribution 
of categories, because of the uniform distribution of p.  

Indicator Simulation of Continuous Variables 

In accordance with [Goovaerts 1997] the sequential indicator simulations of continuous variable Z at N grid 
nodes  can be carried out as follows:  

Discretize the original data Z into (K+1) classes using K threshold values zk – transformation into hard indicator 
data.  

Kk
z

zui k
k ,...,1    ,

    otherwise  0

)z(u if ,1
);( =

î

 ≤

= α
α   (26) 

Define a random path visiting each node of the grid only once 

At each node determine the K ccdf values using any kind of indicator kriging: simple, ordinary, median, 
indicator cokriging. The conditioning information consists of indicator transforms of neighboring original z-data and 
previously simulated z-values. Correct for any order relation deviations and then build a complete ccdf model using 
interpolation/extrapolation algorithms. Draw a simulated value z from that ccdf. Add the simulated value to the 
conditioning data set. Proceed to the next node and repeat corresponding steps.  

Repeat the entire procedure with a different random path to generate another reali zation.  
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Thus, the indicator based simulation algorithm can be viewed as a two-step procedure: 1) simulation class-value; 
2) draw a simulation value from that class using some within class distribution models (e.g., uniform, power, etc.). 
Consequently, indicator simulations guarantee approximate reproduction of only the K class proportions and 
corresponding indicator semivariograms and not reproduction of the cdf and semivariogram of the original 
continuous z-values. Therefore, actual approximation of one-point and two-point z-statistics by sequential indicator 
reali zation depends on several factors: number of thresholds, information accounted when performing indicator 
kriging, interpolation/extrapolation models used for increasing the resolution of ccdf.  
 
Case Study 

Case study is based on a porosity data set [Kanevski et al 2000]. The same problem of binary classification is 
considered. Original data were split i nto model development data set (200 samples wewre used to develop 
classification model) and validation data set (94 samples weree used only to estimate generali zation abiliti es of the 
model). In case of SVM classification model development data set was split i nto training and testing (in order to 
tune hyperparameters) data sets. 

Description of data 

Model development and validation data sets (2 class problem) are presented in Figure 1. Random splitti ng 
procedure was used. 
 

 

Figure 1. Model development and validation data sets potplots. 

Results 

The spatial data classification methodology consist of several steps, including exploratory data analysis, 
structural analysis (variography), model development, validation of model [see detail s in Kanevski 2000].  

Variogram is widely used in geostatistics as a measure of spatial continuity of Random Function Z(x) and is 
defined as:  

{ })()()( 2
1 hxxh +−= ZZVarγ  (27) 

where h is a separation vector between two data points in space. In the case of the intrinsic hypotheses, the 
semivariogram is assumed to exist and depends only on the separation vector between pairs of values separated at 
that particular lag distance. The empirical estimate of the semivariogram is given by: 
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( )γ ( )
( )
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x x h
h

= − +
=

∑1

2

2

1N
Z Zi i

i

N

  (28) 

where N(h) is a number of pairs separated by the vector h.  

A common method to detect the possible presence of an anisotropy in the underlying data set is via the spatial 
correlation map, which is made up of semivariogram values computed for the different separation vectors 
Variogram roses (variograms computed in different directions and at different lag distances) for the categorical raw 
data set and SVM classification are presented in Figure 2. Detail s of the <SVM training can be found in  [Kanevski 
2000]. For the present comparison the following parameters of the SVM were sued: kernel bandwidth = 0.25 and C 
parameter = 1e6.  

 
 
 

 
Figure 2. Variogram roses of model development and SVM classification data sets.  

Theoretical anisotropic model was developed for the indicator data. This model was used in the sequential 
indicator kriging. Several reali zations along with corresponding variogram roses are presented in Figures 3-8. SISIM 
reali zations rather well reproduced variogram structures of the data. Fluctuations from reali zation to reali zation can 
be recognized.  

In the Figure 10 SVM classification is presented along with conditional standard deviation of the SISIM model. 
In this case standard deviation describes uncertainty of the boundary between classes.  

The results of SVM classification were compared with E-type estimates – averaged of 100 SISIM reali zations 
(Figure 11).  
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Figure 3. Realizations 1 & 2 of the SISIM model.  
 
 

 
Figure 4. Variogram Roses of the realizations 1 & 2. 
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Figure 5. Realizations 3 & 4 of the SISIM model.  
 
 

 
Figure 6. Variogram Roses of the realizations 3 & 4. 
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Figure 7. Realizations 5 & 6 of the SISIM model.  
 
 

 
Figure 8. Variogram Roses of the realizations 5 & 6. 
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Figure 9. Example of the SVM classification and SISIM realization 1. 
 

 

Figure 10. SVM classification, model development data postplot and conditional standard 
deviation of the SISIM model. 
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Figure 11. SVM Classification and E-type estimate of the SISIM model.  
 
 

 
Figure 12. SVM Classification (right) and E-type estimates of SISIM (left) along with postplot of 
validation data set. 
 

The results of SVM classification and EW-type estimates are presented in Figure 12 along with validation data 
set. From the point of view of validation set classification, SVM performs a bit better (let us remind that the 
objective of the simulations is not the best predictions, but reproducing of variabilit y and uncertainty ).  
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Conclusions 

The first results on the comparison of SVM binary classification and sequential indicator simulations are 
presented. The results demonstrate that SVM model fits well within the framework of simulation uncertainties. It 
should be noted, that comparison is valid until two-points statistics used in the SISIM model.  

Comparisons on multi -class classification problem using the same methodology seems to be interesting because 
SISIM model expli citl y takes into account spatial variabilit y of classes by modeling corresponding variograms of 
categorical variables. Comprehensive numerical experiments on binary and multi class classification with SVM and 
stochastic simulations are in progress.  
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