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Evaluation of SVM Binary Spatial Clasgfication with
Nonparametric Conditional Stochastic Simulations

M. Kanevskit

Abstract.

The qudity of Suppot Veador Machines (SYM) binary dasdfication d spatial environmental data is
evaluated with geostatistical nonpaametric condtiond stochastic simulations - a spatial Monte Carlo model based
on sequential indicator simulation dgorithm. Equdly probale reali zations are generated andcompared with S/YM
clasdfication. Uncertainty of predictionsisdescribed by condtiond standard deviations. Case study isbased onthe
clasdfication d porosity data. Only binary problem is considered. Results obtained confirm the dficiency of the
SVM binary dasdfication d spatial data.
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Introduction

The report present first results on evaluation of SVM by using geostatistical models of conditional spatial
simulations. Recantly SVM were successully applied to the problem of binary and multi-class classfication of
environmental and poll ution data [Gil ardi et al 200Q Kanevski et al 200(d. It was shown that SVM are flexible data-
adaptive dassfication models and can be adapted to environmental spatial data. Deterministic outputs of SVM
clasgfication were mmpared with geostatistical probabili stic model indicator kriging. Indicator kriging is a basic
model for the estimation of a nonparametric local probability density functions [Goovaerts 1997 Deutsch and
Journel 1998 Chiles and Delfiner 1999 and nonparametric method for the dassfication of spatial data. Indicator
kriging gves unique the “best” estimate of the dass probability. The main objedive of this paper is to apply
conditional stochastic simulation model for binary classfication problem and to generate many equally probable
realizations of the simulator. Analysis (post-processng) of similarity and dssmilarity between realizaions
describes gatial uncertainty and variability of the spatial data. Sequential indicator algorithms (SISIM) is used to
generate reali zations of categorical (discrete) variable. SISIM models reproduces one and two-points (described by
variograms) statistics. For the cmpletenessof work the basis of SVM binary classfication and indicator conditi onal
stochastic simulations are presented.

In general the problem is the foll owing. There are spatially distributed categorical (2 classs) data (high and low
level of porosity). The objediveisto complete an original pattern (data measured on a nonhomogeneous monitoring
network) and to prepare a map of classes (predictions on a dense regular grid). SVM binary model is used in a
manner presented in [Gilardi et a 1999 Kanevski et a 200(J. Conditional stochastic model using sequential
indicator simulation approach is applied to these @tegorical data to generate many equally probable reali zaions.
Conditional simulations satisfy the following conditions: 1) simulated realizations reproduce representative
histogram (after dedustering if necessary) of the original data; 2) simulated reali zations reproducespatial variability
described by semivariograms; 3) conditional simulations honor the data - at the sampling points sSmulated values
equals to the original/measured data.

The reali sations are determined by the anditional data, smulation model and random seed. From this point of
view they are “equall y probable’.

Support Vector M achines Classification

Let us present short description of SVM application to the dasdfication problems. Detailed theoretical
presentation of the SVM can be found in Burgess (1998 and Vapnik (1998 on which the presentation below is
based.

Traditional introduction to the SVM clasdfication is the following: 1) binary (2 clasg classfication of linearly
separable problem; 2) binary classfication of linearly non-separable problem, 3) non-linear binary problem 4)
generali sations to the multi-class clasgfication problems. First results on application of support vedor classfiers
(binary classfication of pallution data, multi-classclassfication of environmental soil types data) can be found in
Gilardi et a. (2000 and Kanevski et a. (20003).

Thefollowing problem is considered. A set Sof points (X;) isgiven in R (we areworking in atwo dimensional
Xi = [X1, Xo] space). Each point X; belongs to either of two classs and is labeled by Y; [/{-1,+1}. The obediveisto
establish an equation of a hyper-plane that divides Sleaving all the points of the same dasson the same side while

maximising the minimum distance between either of the two classes and the hyper-plane — maximum margin hyper-
plane.

Optimal hyper-plane with the largest margins between classs is a solution of the @nstrained optimisation
problem considered below.

Linearly separable case
Let us remind that data set Sislinearly separable if there exist W O R?,b 0 R , such that:
YW'X, +b)>+1 i=1..N 1)
The pair (W,b) defines a hyper-plane of equation (W' X +b )=0.

Linearly separable prodlem: Given the training sample {X;, Y;} find the optimum val ues of the weight veaor W
and bias b such that they satisfy constraints:



YW'X, +b)>+1 i=1..N )
And the weight veaor W minimises the cost function (maximisation of the margins):
FIW)=W'W/2 )

The st function is a convex function of W and the @nstraints are linear in W.

This constrained optimization probem can be solved by using Lagrange multipliers. Lagrange function is
defined by:

L(W,b,a) =W'X /2~ %ai [rw™x, +b)-1]

where Lagrange multipliers a; = 0.

The solution of the cnstrained optimisation probem is determined by the saddle point of the Lagrangian
function L(W,b,a) which hasto be minimised with resped to W and b and to be maximised with resped to O .

Application of optimality condition to the Lagrangian function yields:

N
W= aYX “)
N

aiYi =0 ©)

1=1

Thus, the solution vedor W is defined in terms of an expansion that involves the N training data. Because of
constrained optimisation problem deals with a convex cost function, it is possble to construct dual optimisation
problem. The dual problem has the same optimal value as the primal problem, but with the Lagrange multipliers
providing the optimal solution.

The dual problem is formulated as foll ows: maximise the objedive function:
N N
Q(a)zzai_(1/2)Zaianinxiij (6)
1=1 1=1

Subjed to the mngtraints:

N
aY =0 (7)

1=1
a,20,i=1,..N ®

Note that the dual problem is presented only in terms of the training data. Moreover, the objedive function Q(a)

After determining optimal Lagrange multipliers 4, , the optimum weight vedor is defined by (4) and the biasis
calculated as foll ows:

b=1-W'X?>, forY® =+1

Note that from the Kuhn-Tucker conditions it foll ows that:

o[y WX, +b)-1]=0 ©

Only @; that can be nonzero in this equation are those for which constraints are satisfied with the eguality sign.

The orresponding points X, , called Suppot Vedors, are the points of the set S closest to the optimal separating
hyper-plane. In many appli cations number of support vedorsis much lessthat original data points. The problem of
classfying anew data point X is smply solved by computing:



F(X) = signW™ X, +b) (10)
with the optimal weights W and bias b.

SVM classification of non-separable data: Soft margin classifier

In case of linearly non-separable set it is not possble to construct a separating hyper-plane without all owing
clasgfication error. The margin of separation between clasesis sid to be soft if training data points violate the
condition of linear separability and the primal optimization problem is changed by using dack variables.

Problem is posed as foll ows: given the training sample {X;,Y;} find the optimum values of the weight vedor W and
bias b such that they satisfy constraints:

Y,(W' X, +b)>+1-¢,, & =0,0i (11)

The weight vedor W and the slack variables & minimize the st function:
N
FW)=W'W/2+C% ¢ (12
1=1

where Cisauser spedfied parameter (regularisation parameter is proportional to 1/C).

The dual optimization problem is the following: given the training data maximize the objedive function (find the
Lagrange multipliers):

N N
Qa) = Zai —(l/Z)ZCYiCYjYin XX, (13
1=1 1=1
subjed to the mnstraints (7) and:

0<a,<C,i=1,..N (14)

Note that neither the dack variables nor their Lagrange multi pliers appear in the dual optimization problem.

The parameter C controls the trade-off between complexity of the machine and the number of non-separable
points. The parameter C has to be sdeded by the user. This can be done usually in one of two ways. 1) C is
determined experimentally via the standard use of atraining and testing data sets, which is a form of re-sampling;
and 2) It is determined analytically by estimating VC dimension and then by using bounds on the generali zation
performance of the machine based on a VC dimension (Vapnik, 1998.

SVM non-linear classification

In most practical situations the dassfication problems are non-linear and the hypothesis of linear separation in
theinput spaceistoo restrictive. The basic idea of SVM is. 1) to map the datainto a high dimensional feature space
(posshly of infinite dimension) via anon-linear mapping and 2) construction of an optimal hyper-plane (appli cation
of the linear algorithms described abowe) for separating features. The first item isin agreement of Cover’'s theorem
on the separabilit y of patterns which states that input multi dimensional space may be transformed into a new feature
space where the patterns are linearly separable with high probability, provided: 1) the transformation is non-li near;
and 2) the dimensionality of the feature spaceis high enough (Haykin, 1999. Cover's theorem does not discussthe
optimality of the separating hyper-plane. By using Vapnik's optimal separating hyper-plane VC dimension is
minimised and generalisation is achieved. Let us remind that in the linear case the procedure requires only the
evaluation of dot products.

Let {¢J (X)}j=l - denote a set of non-linear transformation from the input space to the feature space m—isa
dimension of the feature space Non-linear transformation is defined a priori.

In the non-linear case the optimization probem in the dual form is foll owing: given the training data maximize
the objedive function (find the Lagrange multipliers):

Q(a)zzai_(1/2)ZaianinK(Xiij) (19



Subjed to the wngraints (7) and (14), thekernd in (15) is:
K(X,Y) =97 (X)¢(Y) =3 ¢,(X)d;(Y) (16)
=1

Thus, we may use inner-product kernel K(X,Y) to construct the optimal hyper-plane in the feature space without
having to consider the feature spaceitsdf in explicit form.

The optimal hyper-plane is now defined as:
N
f(X):ZanjK(X,Xj)+b 17
=1

Finally, the non-linear dedsion function is defined by the foll owing relationship:
F(X) = sigriWTK (X, X,) +b] (18
The reguirement on the kernel K(X, X;) is to satisfy Mercer’ s conditions (Vapnik 1998. Three @mmon types of
Support Vedor Machines are widdly used:
Polynomial kernel:

K(X,X;) = (XTX; +D° (19

where power pis pedfied apriori by the user. Merce’ s conditi ons are always stisfied.
Radial basis function (RBF) kernel:

K(X,Xj):exp{—”X—Xj”z/Zaz} (20)

where the kernel bandwidth o (sigma value) is gedfied a priori by the user. In general, Mahalanohis distance
can be used. Merce’s conditions are always stisfied.

Two-layer perceptron:
K(X,X,) = tan{B,X" X, + Bo} 21

Merce’s conditions are satisfied only for some values of 3, [i.

For all threekernels (learning machines), the dimensionality of the feature spaceis determined by the number of
support vedors extracted from the training data by the solution to the mnstrained optimization problem. In contrast
to RBF neural networks, the number of radial basis functions and their centers are determined automaticall y by the
number of support vedors and their values. In the present study only the results obtained with the RBF kernel are
presented.

SVM usudly are trained (tuning of hyperparameters, like kernel bandwidth in RN"BF kernel) by splitti ng data
into training and testing data sets. The same technique was applied in this gudy. Detail s can be found in [Kanevski
et al 2009

Conditional Stochastic Simulations

Principles of Sequential Simulations

Sequential simulation is the only truly general simulation algorithm. The reali zations are cntinuous functions
(diffusive models), or piecavise @ntinuous with fixed or random discontinuities (jump models). The idea of
sequential smulationsis wel known and was introduced to geostatistical society by Alabert and Massonat in 199Q
We present sequential simulation approach foll owing presentation in [Chil es and Delfiner, 1999.

Let us consider a vedor-valued random variable Z=(Z;, Z,, ... , Zx )" for which aredlization of the subvedor
(Z1, Z5, ... , Zw )" isknown and equal to (z1, 2, ... , zw )" (0< M<N). The distribution of the vedtor Z conditional
onZ =z (1=1,2,...,M) can befactorized in the form



PHZy .y S Zyu <Zya+ 02y Zya S Zya < Zya +0204)2,,..2 }
Z,.-Zy}

OPH{Zy12 € Zysz < Zyar + 0212|212y s Zy )

:Pr{ZM +1 < ZM +1 < ZM +1 + dZM +1

. (22

[ ]
OPr{zy £ Zy <2y +d2y|2,-- 2y, Zy 1, Zy o}

Using this factorization random vedor Z can be smulated sequentially by randomly sdeding Z; from the
conditional distribution Pr{Z<z | z, z, ... 74} for i= M+1,..., N. and including the outcome z; in the cnditi oning
data set for the next step.

This procedure of decomposition of joint pdf into product of conditional pdfsis very general and can be used for
spatial random functions as well. Let us remind that spatial function is a coll ecion of random variables. It makes
possble the amnstruction of both a nonconditional (M=0) and conditional (M>0) simulations. The same procedure
can be applied to co-simulation of several nonindependent random functions. It produces smulations that match not
only the mvariance but also the spatial distribution. In general, it is not known where to take nditional
distributions. But for a Gausgan random function with known mean, the enditional distribution is Gausdan with
mean and variance obtained from simple kriging.

Sequential simulation is a theoretically smple and general simulation algorithm that is conditional by
congtruction. Due to implementation problems some approximations are needed. The tests sowed that these
approximations do not have significant impact on the reproduction of the underlying Gaussan modd [Gomez-
Hernandez and Cassraga 1994.

Sequential Indicator Simulations

The model is based on the principles of sequential simulation approach. But instead of working with continuous
Gausdan random function we are working with indicator transformed data (or classs). Sequentia indicator
simulation (SIS) can be used bath for the nonparametric simulations of continuous random fields, as well as for
categorical variables. Asin the @ase of indicator kriging, the indicator approach all ows to acoount for classspedfic
patterns of spatial continuity through different indicator variogram models. Let us remind that in Gaussan
simulation spatial variahility is characterized by a single semivariogram function.

Indicator simulations are well suited for categorical variables smulations as well as for continuous variables.
The procedure of SIS of continuous variable is the following (seg e.g. Goovaerts 1997):

Discretize the range of variation into z into (K+1) classesusing K threshold z,. Transform each datum z(u,) into
avedor of hard indicator data:

M if z(u,)<z k=1,.KO

23
otherwis% 23

i(u;z) =

Define a random path visiting each node of the grid only once
At each node:

Determine the K codf values [F(u’; zJd(n)]” using any of the indicator kriging algorithms: simple, ordinary,
median, indicator co-kriging or probability kriging. The @nditioning information consists of indicator transforms
(and uniform transforms for probabilit y kriging) of neighboring original z-data and previously simulated z-val ues.

Corred for any order relation deviations. Then build a complete calf mode [F(u”; z|(n)]" , O z, using the
interpolation/extrapolation algorithms

Draw a simulated value from that codf

Add the simulated value to the mnditioning data set

Proceal to the next node along the random path.

Repeat the entire procedure with a different random path to generate another reali zaion.



At each node, the simulation can be mnsidered as atwo steps procedure: a simulated classvalue (thresholds) is
first asdgned to the grid node; a simulated value is then drawn from that class Consequently, indicator-based
algorithms guarantee approximate reproduction of the K class proportions and corresponding indicator
semivariograms and not reproduction of the af and semivariogram of the @ntinuous z-values. Actually,
approximation of one-point and two-point statistics by SIS depends on several factors: discretization level (number
of thresholds), indicator kriging procedure; interpolation/extrapolation models used to increase resolution of
modeled cdf.

Simulation of Categorical Variables

Let us consider simulation of categorical variableg Deutsch and Journel 1997. By definition categorical spatial
function consists of K mutually exclusive ategories Sc k= 1,...,K. At any location only one dasscan be deteded.

Let i(U; S) betheindicator of category S set it to 1if ULl S and zero atherwise.

Dired kriging of theindicator variablei(U; Sc) provides an estimate/model for the probability that S prevail s at
location U.

Prob'{I (us,) =1I(n)}=pk+i_&,[l (Uy3S) ~ Py (25

where px = E{I(u;s)} [J[0,1] is the marginal frequency of category S« inferred e.g. from the dedustered
proportion of data of type S . The weights are given by simple indicator kriging equations using indicator
covariances of corresponding classs.

When the average proportions vary locally, one an expli citly provide the simpleindicator kriging with smoathly
varying local proportions.

The procedure of sequential simulation of categorical variables implemented in GSLIB is the foll owing.

At each node u along the random path, indicator kriging followed by order relation corredion provides K
estimated probabiliti es p(u|(Ci)), k= 1,...K . The conditi oning information (Ci) consists of bath the original data
and the previously simulated indicator values for categories S¢

Next, define any ordering of the K categories, say 1,..K. This ordering defines a cdf-type scaling of the
probability interval [0,1] with K intervals.

Draw arandom number p uniformly in [0,1]. Theinterval in which p fall s determines the smulated category at
location u.

Update all K indicator data sets with this new simulated information, and proceed to the next location along with
the random path.

The arbitrary ordering of the K probabiliti es does not aff edt which category is drawn nor the spatial distribution
of categories, because of the uniform distribution of p.

Indicator Simulation of Continuous Variables

In acocordance with [Goovaerts 1997 the sequential indicator simulations of continuous variable Z at N grid
nodes can be carried out as foll ows:

Discretize the original dataZ into (K+1) classes using K threshold values z, — transformation into hard indicator
data.

o, if z(u,) < z,

k=1..K 26
otherwise L (29

1(uy;2) =

Define a random path visiting each node of the grid only once

At each node determine the K cadf values using any kind of indicator kriging: simple, ordinary, median,
indicator cokriging. The anditi oning information consists of indicator transforms of neighboring original z-data and
previously simulated z-values. Corred for any order relation deviations and then build a complete calf model using
interpolation/extrapolation algorithms. Draw a simulated value z from that codf. Add the simulated value to the
conditioning data set. Proceed to the next node and repeat corresponding steps.

Repeat the entire procedure with a different random path to generate another reali zaion.



Thus, theindicator based simulation algorithm can be viewed as atwo-step procedure: 1) simulation classvalue;
2) draw a simulation value from that classusing some within classdistribution models (e.g., uniform, power, €tc.).
Consequently, indicator simulations guarantee approximate reproduction of only the K class proportions and
corresponding indicator semivariograms and not reproduction of the af and semivariogram of the original
continuous z-values. Therefore, actual approximation of one-point and two-point z-statistics by sequential indicator
realization depends on several factors. number of thresholds, information acoounted when performing indicator
kriging, interpolation/extrapolation mode s used for increasing the resolution of codf.

Case Study

Case study is based on a porosity data set [Kanevski et al 200J. The same problem of binary classfication is
considered. Original data were split into moded development data set (200 samples wewre used to develop
clasgfication model) and vali dation data set (94 samples weree used only to estimate generali zation abiliti es of the
model). In case of SVM classfication modd development data set was lit into training and testing (in order to
tune hyperparameters) data sets.

Description of data

Model development and validation data sets (2 class problem) are presented in Figure 1. Random splitti ng
procedure was used.
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Figure 1. Modedl devdopment andvalidation data sets potplots.

Results

The spatial data classfication methodology consist of several steps, including exploratory data analysis,
structural analysis (variography), modd development, validation of model [seedetail sin Kanevski 200Q.

Variogram is widely used in geostatistics as a measure of spatial continuity of Random Function Z(X) and is
defined as:

y(h)=tvar {Z(x)-zZ(x+h)} @
where h is a separation vedor between two data points in space In the @se of the intrinsic hypotheses, the

semivariogram is asaumed to exist and depends only on the separation vedor between pairs of values sparated at
that particular lag distance The empirical estimate of the semivariogram is given by:

1C



1 N (h)

2N (h) &, (Zi(x) - Z(x+ h))

y(h) =
(29)

where N(h) is a number of pairs sparated by the vedor h.

A common method to deted the posshble presence of an anisotropy in the underlying data set is via the spatial
correlation map, which is made up of semivariogram values computed for the different separation vedors
Variogram roses (variograms computed in different diredions and at different lag distances) for the ategorical raw
data set and SVM classfication are presented in Figure 2. Detail s of the <SVM training can be found in [Kanevski
2004. For the present comparison the following parameters of the SVM were sued: kernel bandwidth = 0.25and C
parameter = 1€6.
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Figure 2. Variogram roses of model devdopment and S/M classfication dda sets.

Theoretical anisotropic model was developed for the indicator data. This modd was used in the sequential
indicator kriging. Several reali zations along with corresponding variogram roses are presented in Figures 3-8. SISIM
reali zations rather well reproduced variogram structures of the data. Fluctuations from reali zaion to reali zation can
be recogni zed.

In the Figure 10 SVM classfication is presented along with conditi onal standard deviation of the SISIM model.
In this case standard deviation describes uncertainty of the boundary between classes.

The results of SVM classfication were mompared with E-type estimates — averaged of 100 SISIM reali zaions
(Figure 11).
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Figure 6. Variogram Roses of the realizations 3 & 4.
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SVM Classification and SISIM Relalization
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Figure 10. SYM classfication, model devdopment data pcstplot and condtiond standad
deviation d the SSM moddl.



SVM Classification {solid line) and E-Type Estimates of SISIM
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Figure 11. SYM Classfication andE-type estimate of the SSIM model.
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Figure 12. SYM Classfication (right) and E-type estimates of SSM (left) alongwith postplot of
validation dda set.

The results of SVM classfication and EW-type estimates are presented in Figure 12 along with validation data
set. From the point of view of validation set classfication, SYM performs a bit better (let us remind that the
objedive of the simulationsis not the best predictions, but reproducing of variability and uncertainty ).
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Conclusions

The first results on the wmparison of SVM binary classfication and sequential indicator simulations are
presented. The results demonstrate that SYM modd fits well within the framework of simulation uncertainties. It
should be noted, that comparison is valid until two-points gatistics used in the SISIM model.

Comparisons on multi-classclassfication problem using the same methodology seams to ke interesting because
SISIM modd explicitly takes into account spatial variability of classes by modeling corresponding variograms of
categorical variables. Comprehensive numerical experiments on binary and multi classclassfication with SVM and
stochastic simulations are in progress
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