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Abstract. Support Vedor Machines (SVYM) is a new machine leaning approach
based on Statistical Leaning Theory (Vapnik-Chervonenkis or VC-theory). VC-
theory has a solid mathematical background for the dependencies estimation and
predictive leaning from finite data sets. SVM is based on the Structural Risk
Minimisation principle, aiming to minimise bath the empiricd risk and the
complexity of the model, providing high generalisation abilities. SVM provides
non-linear classfication SVC (Support Vedor Classfication) and regresson SVR
(Support Vedor Regresson) by mapping the inpu space into high-dimensional
feature spaceusing kernel functions, where the optimal solutions are constructed.

The paper presents the review and contemporary developments of the
advanced methodol ogy based on Support Vedor Machines (SVM) for the analysis
and modelling o spatially distributed information. The methodology devel oped
combines the power of SVM with well known geostatistical approaches and tods
including exploratory data analysis and exploratory variography. Real case studies
(classfication and regresson) are based on reservoir data with 29 verticdly
averaged porosity data and 2D seismic velocity and amplitude. A porosity
clasdfication and regresson maps are generated using SVC/SVR and the results
are ompared with geostatistical models.

1 Introduction

Support Vedor Machines (SVM) is a new machine leaning approach based on
Statisticd Leaning Theory (Vapnik-Chervonenkis or VC-theory). VC-theory has
a solid mathematical background for the dependencies estimation and predictive
leaning from finite data sets. SVM is based on the Structural Risk Minimisation



principle, aiming to minimise bath the empiricd risk and the cmplexity of the
model, providing high generdlisation abili ties. It can be applied for regresson and
probability density function estimation and hence it is siitable for solving many
reservoir characterisation problems. SVM provides non-linear classfication by
mapping the input space into high-dimensiona feature space using kernd
functions, where the maximal separating margins are cnstructed. Using different
kernels we obtain learning machines analogous to the well-known architedures
(e.g., RBF neural networks, multilayer perceptrons). The performance of the SYM
can be improved by kernel modification in a data-dependent way. It allows to
build very flexible models to solve wide variety of classfication and regresson
tasks.

In the present study radial basis function kernel is mainly used. By varying
SVM hyper-parameters (parameters that are tuned by the user outside the
machine) it was possble to cover wide region of possble solutions — from
overfitting to oversmoathing.

The paper presents the review and contemporary developments of the
advanced methodol ogy based on Support Vedor Machines (SVM) for the analysis
and modelling o spatially distributed information. The methodology devel oped
for the spatial data combines the power of SVM with well known geostatistica
approaches and tods including exploratory data andysis and exploratory
variography. We will present results using areservoir data set with 2% verticdly
averaged porosity data. A porosity map is generated using SVM and theresultsare
compared with geostatistical models and ssimulations. The present study develops
the ideas of adaptation of Support Vedor Machines to spatial data presented in
(Kanevski et a 199, Kanevski and Canu 2000).

Tutorials, publications, software, data, list on SVM applicaions (including
references on speach reaognition, pattern recognition and image dassfication,
objed detedion, function approximation and regresson, bioinformatics, time
series predictions, data mining, etc.) can be found on (www.kernel-machines.org,
2009.

2 Support Vector Machines Classification

Let us present short description of SYM application to the dassification problems.
Detail ed theoreticd presentation of the SVM can be found in (Burgess 1998 and
Vapnik 1998) on which the presentation below is based.

Traditional introduction to the SVM clasdfication is the following: 1) binary
(2 clasy clasdfication of linealy separable problem; 2) binary classfication of
linealy non-separable problem, 3) non-linea binary problem 4) generalisations to
the multi-class classfication problems. First results on application of Support
Vedor Clasdfiers (binary classfication of poll ution data, multi-class classfication
of environmental soil types data) can be found in (Kanevski et al 1999 Kanevski
et al 2000a,b).

The foll owing problem is considered. A set Sof points (X;) is given in R? (we
are working in a two dimensional X; = [X3, X;] space). Each point X; belongs to



either of two classs and islabeled by Y; [/ {-1,+1}. The ohjective is to establish
an equation of a hyper-plane that divides Sleaving al the points of the same dass
on the same side while maximising the minimum distance between either of the
two classes and the hyper-plane — maximum margin hyper-plane.

Optimal hyper-plane with the largest margins between classs is a solution of
the constrained optimisation problem considered below.

2.1 Linearly separable case

Let us remind that data set Sislinealy separable if there eis W O R?,bOR ,
such that
YW'X, +b)=+1 i=1..N 1)
The pair (W,b) defines a hyper-plane of equation
W'X+b)=0

Linealy separable problem: Given the training sample {Xi, Yi} find the
optimum values of the weight vedor W and kias b such that they satisfy
congtraints

YW'X, +b)=+1 i=1..N )

And the weight vedor W minimises the st function (maximisation of the
margins)

FIW)=W'W/2 ©)

The st function isa mnvex function of W and the wmnstraintsare linea in W.
This constrained optimization probdem can be solved by using Lagrange
multipliers. Lagrange function is defined by

L(W,b,a) =WTX/2—iai[Yi(WTXi +b)-1]

where Lagrange multipliers a; = 0

The solution of the nstrained optimisation problem is determined by the
saddle point of the Lagrangian function L(VV,D,q)which has to be minimised
with resped to W and b and to be maximised with resped to a .

Applicaion of optimality conditi on to the Lagrangian function yields

W = iai\/i X; “)



iai\(i =0 (5)

Thus, the solution vedor W is defined in terms of an expansion that involves
the N training data. Because of constrained optimisation problem deals with a
convex cost function, it is possble to construct dual optimisation problem. The
dual problem has the same optimal value as the prima problem, but with the
Lagrange multipli ers providing the optimal solution.

The dual problem is formulated as foll ows: maximise the objective function

N N
Q(a)zzai_(l/Z)ZaianinXiTXj (6)
Subjed to the mngraints
N
ZaiYi =0 (7
a,20,i=1,...N (8)

Note that the dual problem is presented only in terms of the training data.
Moreover, the objective function Q(d) to be maximised depends only on the

After determining optimal Lagrange multipliers ,, , the optimum weight
vector is defined by (4) andthe biasis cdculated as foll ows

b=1-W"X?, forY® =+1
Note that from the Kuhn-Tucker conditionsit foll ows that

o[y WX, +b)-1]=0 ©)

Only @; that can be nonzero in this equation are those for which constraints are

satisfied with the euality sign. The @rresponding points X; , called Sipport
Vedors, are the points of the set S closest to the optimal separating hyper-plane.
In many applications number of support vedors is much less that original data
points. The problem of clasdfying a new data point X is smply solved by
computing

F(X) =signW' X, +b) (10

with the optimal weights W and hbias b.



2.2 SVM classification of non-separable data: Soft margin classifier

In case of linealy non-separable set it is not possble to construct a separating
hyper-plane without alowing classfication error. The margin of separation
between classes is said to be soft if training data points violate the cndition of
linea separability and the primal optimisation problem is changed by using sack
variables.

Problem is posed as follows: given the training sample {X;,Yi} find the
optimum values of the weight vedor W and kias b such that they satisfy
constraints

Y,W'X, +b)>+1-¢,, & =0,0i (11)

The weight vedor W and the slack variables & minimise the st function
N
F(VV):WTW/2+CZEi (12)
1=

where C is a user spedfied parameter (regularisation parameter is proportional
to 1/C).

The dual optimisation problem is the following: given the training data
maximise the objective function (find the Lagrange multipliers)

N N
Qa) = Zai —(1/2)ZaianinXiTXj (13

Subjed to the mngraints (7) and
O0<a;<C,i=1,.N (14)

Note that neither the dack variables nor their Lagrange multipliers appea in
the dual optimisation problem.

The parameter C controls the trade-off between complexity of the machine and
the number of non-separable points.

The parameter C hasto be seleded by the user. This can be done usually in one
of two ways: 1) C is determined experimentaly via the standard use of a training
and testing data sets, which is a form of re-sampling; 2) It is determined
analytically by estimating VC dimension and then by using bounds on the
generalisation performance of the machine based on a VC dimension (Vapnik
1998.

2.3 SVM non-linear classification

In most practical situations the dassfication problems are non-linea and the
hypothesis of linea separation in the input spaceistoorestrictive.

The basic ideaof Support Vedor Machines is 1) to map the data into a high
dimensional feature space (possbly of infinite dimension) via a non-linear



mapping and 2) construction of an optima hyper-plane (application of the linea
algorithms described above) for separating features. The first item is in agreement
of Cover’'s theorem on the separability of patterns which states that inpu
multidimensional space may be transformed into a new feature space where the
patterns are linealy separable with high probability, provided: 1) the
transformation is non-linea; 2) the dimensonality of the feature space is high
enough (Haykin 1999). Cover’s theorem does not discuss the optimality of the
separating hyper-plane. By using Vapnik's optimal separating hyper-plane VC
dimension is minimised and generalisation is achieved. Let us remind that in the
linea case the procedure requires only the evaluation of dot products.

Let {¢ j (X)}j:1 _ denote a set of non-linea transformation from the input
space to the feature space m — is a dimension of the feature space Non-linea
transformation is defined a priori.

In the non-linea case the optimisation problem in the dual form is foll owing:

given the training data maximise the objedive function (find the Lagrange
multipliers)

N N
Q(a)zzai _(llz)zaianinK(XiTXj) (19
Subjed to the congraints (7) and (14). Thekernd in (15) is

K(X,Y) =97 (X)$(Y) = i¢j<x>¢j<v> 16

Thus, we may use inner-product kernd K(X,Y) to construct the optimal hyper-
plane in the feature space without having to consider the feature space itself in
explicit form.

The optimal hyper-planeisnow defined as

N
f(X):ZanjK(X,Xj)+b (17
J:
Finally, the non-linea dedsion function is defined by the following
relationship:
F(X) = sigriWTK (X, X,) +b] (189

The requirement on the kernd K(X, Xj) is to satisfy Mercer’s conditions

(Vapnik 1998). Three ommon types of Support Vedor Machines are widely
used:
Polynomial kernel

K(X,X;)=(X"X; +1)° (19



where power P is spedfied a priori by the user. Mercer’s conditions are always
satisfied.
Radial basis function RBF kernel is defined by

K(x,xj):exdl—||x—xj||2/202} (20)

Wherethe kernel bandwidth 0 (sigmavalue) is edfied apriori by the user. In
general, Mahalanobis distance ca be used. Merca’s conditions are dways
satisfied.

Two-layer perceptron

K(X,X,) = tan{B,X "X + B,} 21

Mercea’s conditions are satisfied only for somevalues of fy [i.

For al three kernels (leaning machines), the dimensionality of the feature
spaceis determined by the number of support vedors extracted from the training
data by the solution to the cnstrained gptimisation problem. In contrast to RBF
neural networks, the number of radial basis functions and their centres are
determined automaticdly by the number of support vedors and their values. In the
present study only the results obtained with the RBF kernel are presented.

2.4 Multi-class classification

If there is a binary classdfier, the multi-class (M clasg classfication problem can
be solved by the different reductions of primary problem to several dichotomies.
(Mayoraz and Alpaydin 1998, Weston and Watkins 1998, Vapnik 1998). The most
evident method is one-to-rest or one-against-all classfication when M binary
clasdfication models, one per each classis developed. Thus, M dedsion functions
are derived, one for each class Final clasdfication label for validated point is
assgned by

y; = arg max ) AMy K (x,x;)+bt™ (22)

Second posshility is par-wise dasdfication when M(M-1) binary
clasdfication models are developed. Another way is dired generalisation of SVM
to M-class problems. The main disadvantage of this method is that the QP-
problem size becomes very large. One-to-rest and pair-wise schemes an to give
satisfactory resultsin the geostatisticd appli cations.

3 Spatial Data Mapping with Support Vector Regression

Asaime Z[JR is a variable to be predicted besed on some geographica
observations (x,y). Our work aims at estimating a dependence between Z and the



geographicd co-ordinates based on empirical data (samples) S:=(X,,Yi,Z,&), | =
1,...n, where
*  X,Vi, - arethe geographicd co-ordinates of samples
e Z - isthe observed or measured quantity. It is assumed to be the
redisation of a random variable 7z with an unknown probability
distribution Py,(Z).
* & -isthemeasurement accuracy for the observation z
e n denotesthe sample size

3.1 Prediction problem

3.1.1 The e-insensitive cost function

Asaming f is a prediction function (i.e. a function used to predict the value of Z
knowing the geographical co-ordinates), we define the cost of choosing this
particular function for a given dedsion process First, for a given observation
(X,Y,2) we define the e-insensitive st function:

-z|l-¢ if|f(xy)-z>¢

f(xy)
&} = _ 23
Axy.ze 1) g 0 otherwise @3

where ¢ characterises me acceptable aror.
Now, for all posgble observations we define the global or generalisation error
also known asthe integrated prediction error IPE:

IPE(f) :J'EZ (C((X, ¥,),z,&, T))w(X, y)dxdy (24)

where w(X,y) is some external measure, indicaing the relative importance of
a mistake at point (X,y). In case of non-homogeneous monitoring networks this
function can take into account spatia clustering. Usually a(X,y) = 1, so that all
positions are assumed to be equally important.

Our approach is a “cost driven” modelling. For the e-insensitive st function
it is possble to compute the best prediction function (i.e. the one minimising the
IPE). For a(x,y) = 1, thistarget function is such that:

[Py@)0dz= [P, (2)dZ (25)

Z<r(X,y)-¢€ z2r(X,y)+e

This function equili brates the tails of the distribution. For & = 0 solution
r(x,y) isthe mnditional median function.

10



3.1.2 Non symmetrical cost function

The same alculation can be done for asymmetric cost function. For some
practicd application, it may appea that the errors under a certain level are not as
much important as the errors above (over-estimations and under-estimations are
not equivalent). In this case the st function should be the foll owing

Ca(f(x,y)-z-¢g,) if (fx,y)-2)>¢,
Cy((xy) 26, 1) = 0b(z- F(xy)-£,) (xy)-2)<e,
H 0 otherwise

where a and b are parameters controlling the asymmetry of the cost function.

In this case rg(X,y) the target function minimising the IPE is defined from the
foll owing relationship:

[bR,,(2)dZ=  [aR,,(2)dZ

z<r (X,y)—¢ z2r (X, y)+e,

It equilibrates the weighted tails. Other robust cost functions are detailed in
(Vapnik, 1998, chapter 11).

3.2 Empirical Risk Minimisation and Structural Risk
Minimisation

3.2.1 Function Modelling

Let us asuuimethis olution isa function that can be decomposed into two different
components. a trend plus a remaining random process A nice way to take into
acoount this prior, is to look for the solution in a functiona space that cen be
decomposed into two arthogona subspaces, one modelling the trend, while the
other one deals with the remaining random process

Asame H is sich a Hilbert space Assume Kj(x,y) is a basis of the trend
component and ¢y, k=1,.m is an orthonormal basis of the remaining part (note
that m can be infinity)

F00y) = 3 W, () + 3 K, (0 29

The cmmplexity of the solution can be tuned through ||W||2: k=1 mWE
(Vapnik 1998). Thus, a relevant srategy to minimise IPE is to minimise the
empiricd error together with maintaining ||wj|> smal. This can be obtained by
minimising the foll owing cost function:

11



% minimize %||w||2
Fubedto |f(x,y)-Z|<¢g , fori=1,..n

(27)

But, unfortunately, some data may lie outside of this epsilon tube due to noise
or outliers making these mnstraintstoo strong and impossble to fulfil. In this case
Vapnik suggests to introduce so called dack variables & , & . These variables
measure the distance between the observation and the € tube (seethe example in
Figure 2.1). The distance between the observation and the € and & , & is
ill ustrated by the foll owing example: imagine you have agreat confidencein your
measurement process but the variance of the measured phenomenaislarge. In this
case, € hasto be chosen a priori very small while the dack variables §; , & are
optimised and thus can be large. Remember that inside the epsilon tube ([ f(X,Y)-

&, f(x,y)+ €]) cost function is zero.

Figure 1. Support vector regression. Explanation of the E&-tube and dack variables.

Note that by introducing the wuple (§; , &) the probem has now 2n
unknown variables. But these variables are linked since one of the two values is

necessary equals to zero. Either the slack is positive (Ei* = 0) or negative (& =
0). Thus, z T[f(xy)- £-&, f(xy)+ £ +&].

Now, we are looking for a solution minimising at the same time its complexity
(measured by ||W|?) andits prediction error (represented by max (& , &)= &; +
Ei*) . In this case, let us introduce a user spedfied trade off parameter C between
these two contradictory objectives. That leads usto the foll owing problem:

12



minimise %||w||2+CZ (& +&)

Df(xi,yi)—Zi — & Sfi
subjed to Ey—f(xi,yi)+zi -g <&

He&r 20 fori=1,..n 28

3.2.2 Dual formulation

A classcal way to reformulate a onstraint based minimisation problem is to ook
for the saddle point of Lagrangian L:

L & @)= W 4CY € +€)~ Y a2 = 1 (x.y) e, +6) -
iai*(f(xi’yi)_zi tE +Ei*)_i(r’ifi +r’i*fi*)

where a,,Q;,n;,n; ae Lagrangian multipliers assciated with the
constraints. They can be roughly interpreted as a measure of the influence of the
congtraints in the solution. A solution with a; = a; =0 can be interpreted as
“the @rresponding data point has no influence on this solution”.

At the minimum the derivative of the Lagrangian equals to zero (Kuhn-Tucker
conditions). Thusit can be dheded that:

w, = Z(a: -a,)¢p, . (x,y) fork=1,..m
1=1
ni=C-a; fori=1,.,n

n, =C-a; fori=1,...,n

These variables can be removed from the origind formulation of the
minimisation probem to get the dual formulation of the problem:

maximise —%iz;jzzl(ai* —ai)ﬁkz:gbk(xi,yi)¢k(xj,yj)ﬁ(a*j -a,)
-y e(a; +a)+ Y Z, (@) -a,)

subjedt to Ez (a; —a)K,(x,y;) =0 forK, =1,..m
=1

H O<a ,a sC fori,...n

13



3.2.3 The nature of the solution

To solve the problem without spedfying functions @ it is necessary to choose @k
such that:

i‘pk(xwyi)‘pk(xpyj):G((Xi1yi)1(xj1yj)) (29

Thisisthe @ase in reproducing kernel Hil bert space where G is the reproducing

kerndl. Functions ¢y are the eigen functions of G. In this case the solution can be
formulated in the foll owing form:

f(xy) = iwie«x, Y).(¢, ) + iﬁ,—K,— xy) @0

with W, =(a; —a, ). Note that the function ¢, has disappeaed. This
solution only depends on the kernel function G. Note also that here & least one of
alphasis equall ed to zero depending o the observed value Z , above or under the
e-tube,

Remark: the solution proposed in equation (30) is the same as the regresson
spline and kriging estimates (since they are positive definite and reproducing
kernels can be interpreted as covariance function (Wahba 1990). The difference
between these methods lies in the underlying hypotheses and thus in the way
weights in (29) are estimated. In the SVR framework the regularisation is not
performed on W but on the representation of the function in some feature space
Thisisaway to define aregularisation principle that guarantees an explicit bound
on the IPE error. From the practicad point of view, due to L* type minimisation,
many of the W can be ather zero o C. W, is zero when associated measurement
point lies within the e-tube and thus has no influence on the estimation. This point
is uselessfor the estimation and can be removed without changing the result. W, is
equals to C when the assciated measurement point is too far from the e-tube. In
this case, theinfluence of the point is bounded at C. Another way to formulate this
remark is to establish the link between SVR and sparse approximation (Girosi
1998.

3.2.4 Kernel choice

Asin the @ase of classfication the practical choice for the kernel is the Gausdgan
kernel:

(31)

_ H (xi_xj)2+(yi_yj)2E
G((xi7yi)7(xj7yj)) _expg 207 %

where O denotes the bandwidth of the kernel. In this case j=1 and the trend
function K isa onstant.

14



3.2.5 Hyper parameters

For practical implementation the hyper parameters of the method have to ke tuned.

These parameters are the foll owing:

* C: dthough often remmmended as very large, geostatistical applications
show a great ded of dependence on this parameter. It has to be tuned
carefully.

o & :if noadditional information is available the easiest way to tuneit isto put
it small in comparison to standard deviation of data. See below details on
influence of the gpsilon on training and mapping. In general, it can be related
to error measurements and/or small scale variations not resolved by sampling
network usually described by nugget effect in variogram.

* 0o the bandwidth of kernel. Here again the IPE of the proposed solution is
very sensitive to this parameter. More generdly, the performance of the
solution is sengitive to the distance matrix used in the kernel

4 Case studies. Description of data

Let us ligt the main phases (steps) of the dassfication/regresson studies applied
by using SVC/SVR:

1. Visualisation of data Monitoring network analysis and description.
Understanding of data clustering.

2. Exploratory data analysis. Univeriate statisticd analysis, outliers detedion,
data transformation and data pre-processng, trend detedion, etc .

3. Exploratory structural analysis (variography). Understanding and modelling
of spatial correlations.

4. Splitting datainto deta sets: Training, Testing, Vali dation.

5. Traning of SYC/SVR with different models. Seledion of the optimal SVM
hyper-parameters.

6. Pattern completion (categorical datamapping). Regresson, spatia predictions
of continuous variable.

7. Statisticd analysis and variography of the residuals.

8. Understanding and interpretation of the results.

9. Conclusions.

Because of the large differences in magnitude, bath porosity and co-ordinate
values were re-scaled to between zero and one before any calculations were
performed. All mapping and classfication results will thus be presented using
such re-scaled values; however,, it is understood that the origina raw values can
be ohtained by performing a simple back-transform. Batch statistics and data post
plots are presented bel ow.

In the present paper two case studies are considered in detail:

» Binary clasdfication of porosity data. To pose this problem original continuous
data were transformed into “low” and “high” level of porosity. Indicator cut
corresponds to the level of 0.5 (about mean value): porosity data higher/less

15



than 0.5 are mded as class+1 and -1. The results of SVC binary clasgfication

are ompared with indicator kriging. The generalisation of the binary task is a

multi class classfication prodem (Mayoraz and Alpaydin 1998, Weston and

Watkins 1998, Kanevski et al. 200(b). Review on geostatistical approach for

gpatial data dasdfication can be found in (Atkinson and 2000).
 Spatia predictiongmapping o porosity data. Support Vedor Regresson model

is developed for the spatial predictions of continuous porosity data. Results of

the SVR mapping are mmpared with ordinary kriging.

From the beginning ariginal data were split several times into two data sets.
200 and 94 measurements. The first data set was used to develop SVM modes
(training data set) and the second one (validation data set) was used to validate the
results. Becuse monitoring network is not clustered, random splitting was used
(in case of clustered monitoring networks atia dedustering procedures can be
used to have representative testing data set). Another proportions between data
sets were used as well.

Batch gatistics of the entire data set (294 measurements): minimum = 0.0; Q
14 =0.3778; median = 0.515; Q 3/4 = 0.69; max = 1.000e+00; mean = 0.53;
variance = 0.048; skewness = 0.12; kurtosis = -0.63.

Post plots of training and vali dation data sets are presented in Figure 2.

i}
025
050
075
4 Joso

o o]
o v +— v
0.00 0.235 0.50 0.73 0.99

Figure 2. Presentation d training data set as areaof-influence polygons. Post plot of testing
(“+") and velidation (“O") data sets.
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An important phase of spatial data analysis (despite of the methods used) deals
with description of spatial continuity using exploratory variography (Chiles and
Ddfiner 1999). The most widely used measure of spatial continuity for the spatia
function Z(x) is a semivariogram

y(x,h) = 2var{Z(x) - Z(x + h)} = E{(Z(x) —Z(x+ h))z} = y(h)
(32

where h is a separation vedor between points in space In case of intrinsic
hypotheses semivariogram (variogram) depends only on separation vedor
between pairs.

The empiricd estimate of the semivariogram is given by

1 N (h)

2N(h) £ (709 =2, 6cx ) (33

where N(h) isanumber of pairs separated by vector h.

Variogram rose — semivariogram computed for the different separation vedors
for the training data is presented in Figure 3. Geometrical anisotropy is present in
the Northeast and Southwest trending dredions.
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Figure 3. Variogram rose of training data.

In case of second order stationary regionalized random function the relationship
between covariance function C(h) and variogram isfollowing: y(h)=C(0)-C(h).
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Behaviour of the variogram nea the origin at small distances describes the
smoathnessof the function and characterises the relationship between random and
spatially structured perts of information.

In the present study the variography is widely used to control the quality of
models performance

4.1 Classification of reservoir data

In the present paper only the binary classfication problem is considered. Original
data were transformed into indicators (2 classes) and split into training, testing and
validation data set used to develop a model, to tune hyper-parameters (kernel
bandwidth and regularisation parameter C) and to vali date the moddl. The splitting
was performed several timesin different proportions.

4.1.1 Binary classification with Support Vector Machines

The particular case of data splitting into training (includes 150 training and 50
testing deta points) and validation data (94 data points) setsis presented in Figure
4. The problem is clealy non-linear. Validation data represents different regions
classs.
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Figure 4. Binary (2 classes) classification problem. “+” — post plot of validation data.

In order to find optimal hyper-parameters comprehensive search was caried
out by computing training and testing error surfaces depending on kernel
bandwidth and C parameter. The optimal choice is the one with low values of
training and testing errors and small values of Support Vedors.
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The behaviour of the error surfacesis foll owing:

Training eror is smal and even zero in the region of small kernel
bandwidths — overfitting region. All data points are important (overfitting)
and are Support Vedors: In this region generalisation is bad and testing
error is high. Testing error and number of Support Vedors do not depend
on C parameter. For the training error at higher values of C overfitting is
achieved at larger values of kernel bandwidths (seeFigures 5-7).

In the region of high values of kernd bandwidths (comparable with the
scale of the region) there is an oversmoathing. Training error is high and
testing error after reaching some minimum at optimal intermediate values
of bandwidth is also increasing. In this region the number of Support
Vedorsisaso dowly increasing.

An optimal region is reached at intermediate values of kernel bandwidth
and C parameter. In our case the optimal parameters were the foll owing:
kernel bandwidths about 0.11 and C=10.

Log(C)

3.70

0.0

0.g2
L

0.04
008
o1z
014

0.01

o1 0.21 030 0.40
KERNEL BANDWIDTH

Figure 5. SVM binary clasdficaion. Estimate of training error surface.

The dasdfication solution with the optima hyper-parameters is presented in
Figure 8. Validation data are post plot as well. In the following sedion of the
paper the same problem is lved with indictor kriging. Let us remind that the
clasdcal output of SVC is deterministic dassfication, in case of indicaor kriging
output is a probability map to be above or below the threshold.
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Figure 7. SVM binary classficaion. Number of Support Vectors surface.
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Figure 8. SVM optimd classificaion along with validation data post plot. Filled circles
belong to the validation data of white zone class, empty circles belong to validation data of
coloured class. Number of Support Vectors (“+") equals 56.

Thus, in order to make dasdfication, SVC neals only 56 data points (they are
Support Vedors). Training error was 4.6%, testing error = 18% and validation
error = 11%. Only at the border of dedsion surface where there is the biggest
uncertainty in classfication, SYC has me problems with clasdfication of
validation data. In fact, it should be taken into account that data can be
contaminated by noise and it is not necessary to follow exactly training and
validation classes for the particular realisation of the regionalized function.

4.1.2 Binary classification with indicator kriging

In order to compare the results of SVM binary clasdfication with geostatisticd
approach indicator kriging was used. Indicator kriging is a kriging applied to the
indicator transformed data:

I(X,Zk) - E)a lf‘Z(X) < Zk (34)

in another case

where Zx isathreshold.
In terms of probability indicator can be represented as
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E{1(x 20} =P{z(x) < 2.} = F(z,) (35)

Thus, the output of the indicator kriging spatial predictionsis interpreted as a
probability to be below threshold. It gives a probabili stic interpretation of the
binary classfication problem.

The indicator kriging is a BLUE Best Linea Unbiased Estimator applied to the
indicators (Deutsch and Journd 1997). The basic equations of the indicaor
kriging written in terms of covariance function are foll owing:

n

Fr (50,2 0D = Y Al (x,,2,) (30

=1

;Akoﬂc, (X =Xa:Z )+ M, =C(X=%,,2. ), a=1...n (37)
=1

> Ay, =1 39
=

After exploratory variography based on data, covariance functions/variograms
should be modedlled. Thisis performed by fitting the theoreticdly valid models to
the experimental ones.

The results of indicator kriging are presented in Figure 9 dong with validation
data post plot.
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Figure 9. Results of indicator kriging (probability to belong to class “O") aong with
validation data post plot.
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The output of indicator kriging is a probabili stic map to be above or below
threshold. In our case the interpretation is to belong to one or another class The
solution of indicaor kriging is more variable, because of exactitude properties of
IK — the solution foll ows training data points. The same kind of solution can be
obtained by SVC by reducing kernel bandwidth moving into overfitting region.

Another commentsisrelated to anisotropy. In case of SVC isotropic kernel was
used. In case of IK anisotropic variogram model was developed taking into
acoount anisotropic spatia correlations. Next step in the development of SVC
deals with the implementation of anisotropic kernds and/or pre-processng of data
(e.g., co-ordinates transformations). Finally, other kernels can be applied as well
(seeVapnik 1998, where wide choiceof kernelsis presented).

4.2 Support Vector Regression

In the present sedion the problem of reservoir data mapping —spatial regresson —
using SVR isconsidered.

4.2.1 SVR Training

In case of SVR there are three hyper-parameters and eror cubes should be
analysed to find the optimal solution. Comprehensive search in a 3D hyper-
parameter space was performed. Some 2D errors aurfaces with fixed C parameter
are presented in Figures 10-12.

The same discusson as in the case of classfication concerning overfitting and
oversmoathing regionsis applicable aswell. The optimal parameters were chosen
taking into acoount training and testing errors, number of Support Vedors.
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Figure 10. Egtimate of SVR training error surface. C= 10000
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Figure 11 SVRtegting error surface C=10000.
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Figure 12. Surface of the number of Support Vectors. C=10000.

An important phase of the training procedure deals with understanding how
much “useful” information was extracted by SVR from data and what is l€ft. In
terms of spatial data and geostatistics useful information is spatially structured
information. Spatia structures are described basically by variograms. That's why
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variographic tods are dficient to understand and to explain the results. In the
present study they were used to control the performance of SVR.

4.2.2 SVR Mapping

The two particular results of Support Vedor Regresson mapping are presented
in Figures 13 and 14. It should be noted that by varying hyper-parameters it was
posshble to develop models of very different complexity, covering regions from
overfitting to oversmoathing.

An interesting oversmoathing case deds with large scale modelling — so called
detrending. Non-lineaity and flexibility of SVR highly simplifies detrending
problem. The quality of detrending can be ntrolled with geostatistical tods,
including variography.

Actualy, hierarchy of SVR models can be developed to extract anisotropic
information from data & different scdes and in different regions. One posshility
could be mixtures of SVR, another one—local SVR models.

An important question, not elaborated in this paper, deds with influence of data
pre-processng: linea and non-linear transformations of spatial co-ordinates and
data. It seems that in case of anisotropic structures data pre-processng can make
them more isotropic and less Support Vedors will be necessary, perhaps leading
to better generalisation properties. This probem should be studied with a well
defined simulated data sets.
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Figure 13 SVR porosity mapping. Kernel bandwidth = 0.1, epsilon parameter = 0.0, all
training deta ae Support Vectors (“O").
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Figure 14. SVR porosity mapping. Kernel bandwidth = 0.1, e parameter = 0.08, the number
of Support Vectors (“O”) equals 50.

Theresults on validation data by using SVR(C=10000, kernel bandwidth = 0.1,

€ = 0.08) are presented in Figure 17. Let us remind that only 50 (!) data (Support
Vedors) were used to get amost the same quality of the model as OK. Here we
can pose an interesting question about the use of SVR in monitoring network
design and redesign. The methodological work in this diredion should be related
to the developments of corresponding objedive functions. Let us remind that in
case of OK kriging variance is often used to gptimise monitoring network. An
analogue of estimation variance ca be derived for the SVR based on the training
residuals. This approach was applied with General Regresson Neural Networks in
(Kanevski 1999.

4.2.3 Geostatistical Mapping. Ordinary Kriging

Ordinary kriging OK was used as a geostatistical model for the porosity
mapping. Ordinary kriging is a BLUE model aso based on the analysis and
modelling of spatia correlation structures — variography and is described by the
following system of equations (n —number of data measurements):
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Z' (%) = iwi(xozm)

YWy, U=V i=1,...0
=

n

> w =1

1=1

In accordance with geostatistical methodology deep structural analysis —
exploratory variography, and modelling were arried out. The main attention
during variogram fitting was paid to the diredions in which drift is negligible.
Geostat Officewas used at all stages of geostatistical analysis and modéelling.

The result of ordinary kriging mapping of porosity data is presented in Figure
15.

The same OK mode was used to estimate validation data. The results of the
validation for SVR modeds and OK are presented in Figure 16. They are quite
goad.
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Figure 15. Porosity mapping with ordinary kriging.
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Figure 16. Validation results. SVR and ordinary kriging.

The quality of mapping cen be qualitatively described by omnidiredional
variograms of the residuas ( seeFigure 17.). SVR training residuals demonstrate
pure nugget effed — all spatially structured information was extracted by SVR
model from data. Nugget effed of the training residual s corresponds to the nugget
effed of raw data. The variograms of the validation residuals bath of OK model
and SVR have pure nugget effect aswell. It means goad results on validation data.
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Figure 17 . Omnidirectional variograms of raw data, SVR training residuals, SVR

validation residuds, kriging validation residuds.
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5 Conclusion

The paper presents adaptation of the SVM agorithms — Support Vedor
Clasgfication and Support Vedor Regresson to the spatially distributed reservoir
data. Two problems were mnsidered in detall: 1) binary classfication of spatial
categorical data and 2) spatia regresson/mapping of porosity data. The basic
ideas of SVM training by using errors surfaces was demonstrated. In was shown
that nea the optimal solution the number of Support Vedorsis rather low that isa
goad indicaion for low generdisation/validation error. The obtained results are
promising that was demonstrated with validation data in bath cases.

The results were compared with geostatistica approach — indicaor kriging in
case of clasdfication and ardinary kriging in case of regresson.

The future devel opments of the present work ded with the study of kernel types
(polynomial, MLP- like, splines, etc.) on the training procedures and final results.
An important issJe is related the problems of estimation of prediction variance
(like kriging variance in geostatistics). This problem can be solved partly by using
training residuals. Finally, a generdisation of the SVM to the multivariate @se,
when quality and quantity of information on different variables differ is of great
importancefor wider application of SVM approach to environmental data
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